The Pilot's Manual

Commercial Pilot Syllabus

Fifth Edition

A Flight & Ground Training Course for Commercial Pilot Airplane Certification based on The Pilot's Manual: Ground School

by Jackie Spanitz

ASA-PM-S-C5-PDF
Contents

About this Syllabus .. v
Compliance Table .. vii
Enrollment/Graduation Certificates ... viii

Stage 1

Introduction to the Commercial Certificate ... 1
Module 1 ... 2
Module 2 ... 3
Module 3 ... 4
Module 4 ... 5
Module 5 .. 6
Module 6 ... 7
Optional Review ... 8

Stage 2

Cross-Country Flight Experience .. 9
Module 1 .. 10
Module 2 .. 11
Module 3 .. 12
Module 4 .. 13
Module 5 .. 14
Module 6 .. 15
Optional Review ... 16

Stage 3

Complex Aircraft and Night Flying Experience ... 17
Module 1 .. 18
Module 2 .. 19
Complex Endorsement ... 20
Module 3 .. 21
Module 4 .. 22
Module 5 .. 23
Module 6 .. 24
Optional Review ... 25

Stage 4

Prep for Checkride .. 26
Module 1 .. 27
Module 2 .. 28
Module 3 .. 29
Module 4 .. 30
Module 5 .. 31
Module 6 .. 32
Optional Review ... 33
Commercial Pilot Endorsements and Checkride List ... 34

Airman Certificate Application 8710-1 Form ... 35

Appendices

Stage Exams 1–4 ... Appendix 1–1 through 4–4
About This Syllabus

Course Objective:

The objective of this syllabus is for the student to acquire the necessary aeronautical skill, knowledge and experience to meet the requirements of a Commercial Pilot certificate with an Airplane category rating and a Single-Engine Land class rating.

Prerequisites:

The student must be able to read, speak, write and understand the English language, meet the physical standards for a second-class medical certificate, and possess a valid private pilot certificate with an instrument rating (or be concurrently enrolled in an instrument rating course). The student must pass the instrument rating practical test prior to completing the Commercial Pilot Certification course. To meet the experience requirements of a 14 CFR Part 141 Commercial certificate, the student must have completed the Private Pilot Certificate Course, and the Instrument Rating Course prior to beginning this Commercial Pilot Certification Course. The student must be 18 years old at the time of the practical test to gain certification.

Experience Requirements for a Commercial Certificate Include:

- 190 hours of flight time (250 hours for 14 CFR Part 61 programs)
- 100 hours of ground training (no minimum time is stipulated for 14 CFR Part 61 programs)

<table>
<thead>
<tr>
<th>Flight Training</th>
<th>Ground Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Certification Course</td>
<td>35.0 hours</td>
</tr>
<tr>
<td>Instrument Rating Course</td>
<td>35.0 hours</td>
</tr>
<tr>
<td>Commercial Certification Course</td>
<td>120.0 hours</td>
</tr>
<tr>
<td>Total</td>
<td>190.0 hours</td>
</tr>
</tbody>
</table>

Commercial Pilot Certification Course:

The Commercial certificate is made up of 2 requirements: Aeronautical Skill and Aeronautical Knowledge. This syllabus is written to satisfy Part 141 requirements. The syllabus is in four Stages, each containing six Modules. Each stage must be completed in ____ days, not to be more than 90 days. Each Module contains both a flight and ground lesson. This presents an integrated flight training process and will promote easier learning and a more efficient flight training program. Ideally, the ground lesson will be completed prior to the flight. Each flight lesson must include a pre- and post-flight briefing.

Testing Procedures:

Each module contains a reading assignment associated with the ground training program. The review questions following each chapter will test the student’s understanding of the material covered throughout the ground lesson, and must be answered prior to moving on to the next module. A Stage Exam is included with each stage, testing the student on both the ground and flight training material covered throughout the stage. This exam must be passed with a minimum score of 80%, and reconciled to 100%, to proceed to the next Stage.

It is essential that the objective of each module be accomplished before moving on to the next module.

Minimum Requirements:

This is the time necessary to qualify for Part 141 operations, meeting the 35 hours of ground instruction, and the 120 hours of flight time. Many factors play into the finishing flight time: frequency of flying, cooperative weather, airplane and instructor scheduling, and lapses in the flight training process. It is recommended the student fly at least twice a week. This type of schedule produces the most efficient training, and cuts down on review time. If there is an extended lapse in between flights, it may be necessary to review maneuvers; use the optional review flights accompanying each Stage for this purpose (this will allow the student to continue following the syllabus, which is
necessary for a Part 141 program). The student should feel comfortable performing each task in all previous mod-
ules before progressing to the next stage. If student exceeds more than ____ hours of the minimum recommended
time allotted per module, the chief flight instructor must be informed per the Part 141 school certificate.

Instruction in a pilot ground trainer that meets the requirements of §141.41(a) may be credited for a maximum of
30 percent of the total flight training hour requirements. Instruction in a pilot ground trainer that meets the require-
ments of §141.41(b) may be credited for a maximum of 20 percent of the total flight training hour requirements.
When a ground training device is used, the ideal sequence is to learn in the ground training device and practice in
the airplane.

Required Materials for the Commercial Pilot Certification Course:

- *The Pilot’s Manual: Ground School* (#ASA-PM-2)

Recommended Materials for the Commercial Pilot Certification Course:

- *The Pilot’s Manual: Flight School* (#ASA-PM-1)
- ASA Student Flight Record (#ASA-SFR-IC)
- FAA Commercial Pilot Practical Test Standards (referred to as PTS) (#ASA-8081-12)
- ASA FAR/AIM (#ASA-FR-AM-BK, updated annually)
- ASA Commercial Pilot Test Prep (#ASA-TP-C, updated annually)
- ASA Flight computer (*E6-B, CX-2 Pathfinder, or CX-2a Palm*)
- ASA Plotter (student’s choice)
- ASA Flightlogs for cross-country flights (#ASA-FP-2)
- ASA *Commercial Oral Exam Guide* (#ASA-OEG-C)
- Charts for the training operations area
- Airport/Facility Directory

The syllabus uses *The Pilot’s Manual: Ground School* for the ground training program. The review following each
chapter should be finished with the assigned reading. *The Pilot’s Manual: Flight School* is recommended for use
in enhancing the flight training program. Both books contain an index which will help pinpoint the material for the
subject you are working on. ASA’s *Commercial Pilot Test Prep* is also recommended to enhance the program. The
prep will ensure the student is completely prepared for the FAA Knowledge Exam upon completion of the course.
Instructors using this syllabus must ensure current Practical Test Standards are upheld and *Airplane Flying Hand-
book* (FAA-H-8083-3) procedures are maintained at all times.

If you have any comments or questions on how to best use this syllabus, please call ASA at 1-800-ASA-2-FLY.
We will be happy to provide suggestions on how to tailor this syllabus to specifically meet your training needs. **Note to Instructors:** Answers to the Stage Exams are available to instructors by calling 1-800-ASA-2-FLY, or fax your
request on letterhead to 1-425-235-0128.
Commercial Pilot Minimum Course Hours
For Part 141, Appendix D Compliance

These times are for student/instructor guidance only. They are a suggested time schedule which will ensure minimum flight and ground training compliance with Part 141.

<table>
<thead>
<tr>
<th>Page</th>
<th>Dual Flight</th>
<th>Solo Flight</th>
<th>Dual Cross-Country</th>
<th>Solo Cross-Country</th>
<th>Dual Night</th>
<th>Solo Night</th>
<th>Dual Complex Aircraft</th>
<th>Solo Complex Aircraft</th>
<th>Instrument Instruction</th>
<th>Ground Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>2.5</td>
<td>1.0</td>
<td></td>
<td></td>
<td>.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>2.5</td>
<td>1.0</td>
<td></td>
<td></td>
<td>.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>2.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td>.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>2.0</td>
<td>1.0</td>
<td></td>
<td></td>
<td>.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06</td>
<td>2.0</td>
<td>1.5</td>
<td></td>
<td></td>
<td>.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07</td>
<td>2.5 + Stage Check</td>
<td>1.5</td>
<td></td>
<td></td>
<td>.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>* Review</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2.5</td>
<td>7.0</td>
<td>2.5</td>
<td>7.0</td>
<td>.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2.5</td>
<td>8.0</td>
<td>8.0</td>
<td>1.0</td>
<td>.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2.0</td>
<td>8.0</td>
<td>8.0</td>
<td></td>
<td>.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2.0</td>
<td>8.0</td>
<td>8.0</td>
<td>1.0</td>
<td>.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2.0</td>
<td>7.0</td>
<td>7.0</td>
<td></td>
<td>.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2.5 + Stage Check</td>
<td>2.0</td>
<td></td>
<td></td>
<td>.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>* Review</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2.5</td>
<td>1.5</td>
<td></td>
<td>1.0</td>
<td>.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4.0</td>
<td>1.5</td>
<td>4.0</td>
<td>4.0</td>
<td>.8</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2.0</td>
<td>1.5</td>
<td></td>
<td>1.5</td>
<td>.4</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2.0</td>
<td>1.5</td>
<td></td>
<td>1.5</td>
<td>.4</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2.0</td>
<td>1.0</td>
<td></td>
<td>2.0</td>
<td>.4</td>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2.5 + Stage Check</td>
<td>1.5</td>
<td></td>
<td></td>
<td>.4</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>* Review</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2.5</td>
<td>1.5</td>
<td></td>
<td>1.0</td>
<td>.4</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2.0</td>
<td>1.5</td>
<td></td>
<td>1.5</td>
<td>.4</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>.4</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2.0</td>
<td>1.5</td>
<td></td>
<td>2.0</td>
<td>.4</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>2.0</td>
<td>1.5</td>
<td></td>
<td>1.5</td>
<td>.4</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2.5 + Stage Check</td>
<td>1.5</td>
<td></td>
<td></td>
<td>.4</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>* Review</td>
<td>1.5</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48.3</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Reviews are not necessary to meet Part 141 compliance, and are not counted in the TOTALS for the program. They are optional, and should be used if the student is not ready to move on to the next module.

† 14 CFR Part 141 requires 20 hours of dual flight, 5 hours of solo flight, and a total of 35 hours of flight time for the Private Pilot Certificate. 10 hours may be conducted dual or solo, at the instructor’s discretion.

‡ Exact totals will vary with the discretionary 10 hours.

TOL: Takeoffs and Landings
Enrollment Certificate

This is to certify that

Student Name

is enrolled in the Federal Aviation Administration approved Commercial Pilot Certification Course, conducted by

School and Certificate Number

Chief Instructor Date of Enrollment

Graduation Certificate

This is to certify that

Pilot Name and Number

has satisfactorily completed each required stage of the approved course of training including the tests for those stages, and has received _____ hours of cross-country training.

has graduated from the Federal Aviation Administration approved Commercial Pilot Certification Course conducted by

School and Certificate Number

Chief Instructor Date of Graduation
Stage 1
Introduction to the Commercial Certificate

Objective
The objective of Stage 1 is for the student to become proficient in, and have an understanding of the following:

Ground Training
- Course objective
- School requirements, procedures, regulations
- Grading criteria
- Forces acting on an airplane
- Stability and control
- Airframe
- Flight instruments
- Basic flight maneuvers
- Flight information
- Flight physiology
- Regulations

Flight Training
- Flight training process
- Training airplane
- Preflight
- Certificates and documents, including minimum equipment list
- Steep Turns
- Steep Spirals
- Chandelles
- Lazy Eights
- Eights-on-Pylons
- Maneuvering During Slow Flight
- Power-off Stalls
- Power-on Stalls
- Spin awareness
- Normal and crosswind takeoff, climb, approach and landing
- Soft-field takeoff, climb, approach, and landing
- Short-field takeoff, climb, approach, and landing
- Power-off 180° accuracy approach and landing
- Go-around procedures
- Aeromedical factors

Completion Standards
Stage 1 is complete when the student achieves the objective of each module, and can list or describe the correct process or reference for accomplishing elements, exercises and activities. Student shall score at least 80% on the Stage 1 Exam, and all deficient areas shall be reconciled to 100%. Student shall have a second-class medical certificate upon completion of this stage.
Stage 1 / Module 1

Ground Training

Objective:
For the student to be introduced to the Commercial Pilot Certification program, and learn the flight school requirements, procedures, regulations, and grading criteria. Student shall also review stability and control and the forces acting on an airplane.

Content:
- Review course and objectives
- School requirements, procedures, regulations
- Grading criteria, expectations of student
- Review objective of Stage 1

The forces acting on an airplane
- Weight
- Lift
 - Bernoulli’s Principle
 - dynamic and static pressure
 - airspeed
 - airfoil shape
 - aerodynamic force
 - pressure distribution and CP movement
- Drag
 - total drag
 - parasite drag
 - skin-friction drag
 - form drag
 - interference drag
 - induced drag
 - angle-of-attack
 - wing design
 - lift and drag ratio
 - wing flaps
 - leading-edge devices
- Thrust
 - propeller motion
 - forces on a propeller blade
 - propeller efficiency
 - controllable-pitch propellers
 - takeoff effects of propellers
 - propeller torque effect
 - gyroscopic effect
 - P-factor

Stability
- static and dynamic stability
- stability vs. maneuverability
- airplane equilibrium
- pitching moments
- longitudinal, directional, and lateral stability

Control
- elevator
- ailerons
- rudder
- control effectiveness

Completion Standards:
This module is complete when the student has successfully completed all review questions following the assigned reading.

Assignment:
The Pilot’s Manual: Ground School, Chapters 1 and 2

Flight Training

Objective:
For the student to be introduced to the commercial course and training airplane, and gain proficiency in preflight, Steep Turns, Steep Spirals, Slow Flight, Stalls, and normal and crosswind takeoffs and landings.

Content:
Dual Flight (2.5 hours)
- Discussion of the flight training process
- Introduction to the training airplane
- Preflight, including certificates, documents and minimum equipment list
- Checklist use
- Normal/Crosswind takeoff and climb
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Normal/Crosswind approach and landing
- Postflight procedures
- Instrument cockpit check

Solo Flight(s) (1.0 hour)
- Preflight
- Checklist use
- Normal/Crosswind takeoff and climb
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Normal/Crosswind approach and landing
- Postflight procedures

Completion Standards:
This module is complete when the student can maintain flight within ±150 feet altitude, ±15 degrees heading, and ±15 knots airspeed while demonstrating the maneuvers listed in the content of this module.

Recommended Reading:
The Pilot’s Manual: Flight School

Stage 1 / Module 1

Minimum 141 Requirements:
Dual, Local 2.5 hours flight (.4 instrument)
Solo, Local 1.0 hour flight(s)
Ground instruction 2.0 hours

Date of Completion:__________________________
Signature:__________________________
Time Flown:__________________________
Stage 1 / Module 2

Ground Training

Objective:
For the student to review the airplane’s airframe and flight instruments.

Content:
Airframe
- Fuselage
- Wings
- Empennage
- Flight controls
- Landing gear
- Engine and propeller

Flight instruments
- Pressure instruments
- Pitot-static system
- Airspeed indicator
- Altimeter
- Vertical speed indicator
- Gyroscopic instruments
- Turn coordinator/turn indicator
- Attitude indicator
- Heading indicator
- Magnetic compass

Completion Standards:
This module is complete when the student has successfully completed all review questions following the assigned reading.

Assignment:
Ground School, Chapters 4 and 7

Flight Training

Objective:
For the student to review the aeromedical factors of flight, gain additional experience in Steep Turns, Slow Flight, Stalls, and soft-field takeoffs and landings, and be introduced to Chandelles.

Content:
Dual Flight (2.5 hours)
- Discussion of aeromedical factors of flight
- Preflight
- Checklist use
- Soft-field takeoff and climb
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Chandelles
- Soft-field approach and landing
- Postflight procedures
- Instrument approach procedures

Solo Flight(s) (1.0 hour)
- Preflight
- Checklist use
- Soft-field takeoff and climb
- Normal/Crosswind takeoff and climb
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Chandelles
- Soft-field approach and landing
- Normal/Crosswind approach and landing
- Postflight procedures

Completion Standards:
This module is complete when the student can maintain flight within ±150 feet altitude, ±15 degrees heading, and ±15 knots airspeed while demonstrating the maneuvers listed in the content of this module.

Recommended Reading:
Flight School

Minimum 141 Requirements:
- Dual, Local 2.5 hours flight (.4 instrument)
- Solo, Local 1.0 hour flight(s)
- Ground instruction 1.5 hours
Stage 1 / Module 3

Ground Training

Objective:
For the student to understand the basic flight maneuvers required of the Commercial pilot, and the tools available for obtaining flight information.

Content:
Basic flight maneuvers
- Straight-and-level flight
- Climbing and descending
- Turning and load factor
- Stalling
- Spinning

Flight information
- NOTAMs, TFRs
- Airport/Facility Directory
- Aeronautical Information Manual
- Federal Aviation Regulations
- Pilot/Controller Glossary
- Advisory Circulars

Completion Standards:
This module is complete when the student has successfully completed all review questions following the assigned reading.

Assignment:
Ground School, Chapter 3

Flight Training

Objective:
For the student to continue practicing Steep Turns, Slow Flight, Stalls, Chandelles, and short-field takeoffs and landings, and be introduced to Lazy Eights.

Content:
Dual Flight (2.0 hours)
- Preflight
- Checklist use
- Short-field takeoff and climb
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Chandelles
- Lazy Eights
- Short-field approach and landing
- Postflight procedures
- Missed approaches

Solo Flight(s) (1.0 hour)
- Preflight
- Checklist use
- Normal/Crosswind takeoff and climb
- Soft-field takeoff and climb
- Short-field takeoff and climb
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Chandelles
- Lazy Eights
- Normal/Crosswind approach and landing
- Soft-field approach and landing
- Short-field approach and landing
- Postflight procedures

Completion Standards:
This module is complete when the student can maintain flight within ±150 feet altitude, ±15 degrees heading, and ±15 knots airspeed while demonstrating the maneuvers listed in the content of this module.

Recommended Reading:
Flight School
Stage 1 / Module 4

Ground Training

Objective:
For the student to gain an understanding of flight physiology.

Content:
Flight physiology
___ Am I fit to fly?
 ___ physical fitness
 ___ mental fitness
 ___ medical checks
 ___ medication
 ___ upper respiratory tract problems
 ___ corrective lenses
 ___ food poisoning
 ___ alcohol
 ___ smoking
 ___ fatigue and sleep deprivation
 ___ blood donation
___ Low temperatures
___ Respiration
 ___ increased altitude
 ___ hypoxia
 ___ carbon monoxide poisoning
 ___ hyperventilation
 ___ decompression sickness
___ Balance
 ___ sensing acceleration
 ___ inner ear balance mechanism
 ___ motion sickness
 ___ vertigo
 ___ spatial disorientation
 ___ sensory illusions
___ Vision
 ___ structure of the eye
 ___ adaptation of eyes to darkness
 ___ scanning for other aircraft
 ___ visual illusions on approach

Completion Standards:
This module is complete when the student has successfully completed all review questions following the assigned reading.

Assignment:
Ground School, Chapter 12

Flight Training

Objective:
For the student to gain proficiency in normal/crosswind/soft-field/short-field takeoff, climb, approach, and landings, Steep Turns, Maneuvering During Slow Flight, Stalls, Chandelles, Lazy Eights, and go-around procedures, and be introduced to Eights-on-Pylons, and the Power-Off 180° accuracy approach and landing.

Content:
Dual Flight (2.0 hours)
___ Preflight
___ Checklist use
___ Normal/Crosswind takeoff and climb
___ Steep Spirals
___ Maneuvering During Slow Flight
___ Power-on Stalls
___ Power-off Stalls
___ Chandelles
___ Lazy Eights
___ Eights-on-Pylons
___ Maneuvering under instrument conditions
___ Power-off 180° accuracy approach and landing
___ Go-around procedures
___ Normal/Crosswind approach and landing
___ Postflight procedures

Solo Flight(s) (1.0 hour)
___ Preflight
___ Checklist use
___ Normal/Crosswind takeoff and climb
___ Short-field takeoff and climb
___ Soft-field takeoff and climb
___ Steep Turns
___ Steep Spirals
___ Maneuvering During Slow Flight
___ Power-on Stalls
___ Power-off Stalls
___ Chandelles
___ Lazy Eights
___ Eights-on-Pylons
___ Power-off 180° accuracy approach and landing
___ Go-around procedures
___ Normal/Crosswind approach and landing
___ Postflight procedures

Completion Standards:
This module is complete when the student can maintain flight within ±150 feet altitude, ±15 degrees heading, and ±15 knots airspeed while demonstrating the maneuvers listed in the content of this module.

Recommended Reading:
Flight School
Stage 1 / Module 5

Ground Training

Objective:
For the student to learn the regulations pertinent to the commercial pilot and commercial flight operations.

Content:
Regulations

- 14 CFR Part 1 Definitions and abbreviations
- 14 CFR Part 61 Pilot certification
- 14 CFR Part 91 General operating and flight rules
- NTSB Part 830
- 14 CFR Part 125
- 14 CFR Part 135

Completion Standards:
This module is complete when the student has successfully completed all review questions following the assigned reading.

Assignment:
Ground School, Chapter 19
Student should obtain second-class medical certificate

Flight Training

Objective:
For the student to gain additional proficiency in takeoffs and landings, go-around procedures, Steep Turns, Slow Flight, Stalls, Chandelles, Lazy Eights, and Eights-on-Pylons, and be introduced to spin awareness.

Content:
Dual Flight (2.0 hours)

- Preflight
- Checklist use
- Soft-field takeoff and climb
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Spin awareness
- Chandelles
- Lazy Eights
- Eights-on-Pylons
- Power-off 180° accuracy approach and landing
- Go-around procedures
- Soft-field approach and climb
- Postflight procedures
- Partial panel

Solo Flight(s) (1.5 hours)

- Preflight
- Checklist use
- Normal/Crosswind takeoff and climb
- Soft-field takeoff and climb
- Short-field takeoff and climb
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Chandelles
- Lazy Eights
- Eights-on-Pylons
- Power-off 180° accuracy approach and landing
- Go-around procedures
- Normal/Crosswind approach and landing
- Soft-field approach and landing
- Short-field approach and landing
- Postflight procedures

Completion Standards:
This module is complete when the student can maintain flight within ±100 feet altitude, ±10 degrees heading, and ±10 knots airspeed while demonstrating the maneuvers listed in the content of this module.

Recommended Reading:
Flight School
Stage 1 / Module 6 and Stage Check

Ground Training

Objective:
For the student to review all Stage 1 objectives in preparation for the Stage 1 Exam.

Content:
- The forces acting on an airplane
- Stability and control
- Airframes
- Flight instruments
- Basic flight maneuvers
- Flight physiology
- Aeronautical decision making
- Regulations

Completion Standards:
Stage 1 Exam must be passed with a minimum score of 80%, and reconciled to 100%.

Assignment:
Stage 1 Exam

Flight Training

Objective:
For the student to review takeoffs, landings, Steep Turns, Chandelles, Lazy Eights, Eights-on-Pylons, Slow Flight, Stalls, and go-around procedures. For the Stage Check, student should demonstrate skill in the following areas according to the completion standards.

Content:

Dual Flight (2.5 hours)
- Preflight
- Confirm student’s second-class medical
- Checklist use
- Soft-field takeoff and climb
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Spin awareness
- Chandelles
- Lazy Eights
- Eights-on-Pylons
- Maneuvering under instrument conditions
- Power-off 180° accuracy approach and landing
- Go-around procedures
- Soft-field approach and climb
- Postflight procedures
- Instrument approach

Solo Flight(s) (1.5 hours)
- Preflight
- Checklist use
- Normal/Crosswind takeoff and climb
- Soft-field takeoff and climb
- Short-field takeoff and climb
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Chandelles
- Lazy Eights
- Eights-on-Pylons
- Power-off 180° accuracy approach and landing
- Go-around procedures
- Normal/Crosswind approach and landing
- Soft-field approach and landing
- Short-field approach and landing
- Postflight procedures

Completion Standards:
This module is complete when the student can maintain flight within ±100 feet altitude, ±10 degrees heading, and ±10 knots airspeed while demonstrating the maneuvers listed in the content of this module.

Recommended Reading:
Flight School
Commercial Pilot Test Prep, Chapters 1, 3 and 10

Stage 1 / Module 6

Date of Completion:

Signature:

Time Flown:

Stage Exam Score:

Stage Check Successful:

Minimum 141 Requirements:
- Dual, Local 2.5 hours flight (.4 instrument)
- Solo, Local 1.5 hours flight(s)
- Stage check
- Ground instruction 1.5 hours
- Stage exam
Optional **Stage 1 Review**

Date of Completion: ____________________________

Signature: ____________________________

Time Flown: ____________________________

Flight Training

Objective:
For the student to review all Stage 1 tasks and meet all objectives.

Content:
Dual Flight (1.5 hours)
- _____ Preflight
- _____ Checklist use
- _____ Soft-field takeoff and climb
- _____ Steep Turns
- _____ Steep Spirals
- _____ Maneuvering During Slow Flight
- _____ Power-on Stalls
- _____ Power-off Stalls
- _____ Spin awareness
- _____ Chandelles
- _____ Lazy Eights
- _____ Eights-on-Pylons
- _____ Maneuvering under instrument conditions
- _____ Power-off 180° accuracy approach and landing
- _____ Go-around procedures
- _____ Soft-field approach and climb
- _____ Postflight procedures

Solo Flight (1.5 hours)
- _____ Preflight
- _____ Checklist use
- _____ Normal/Crosswind takeoff and climb
- _____ Soft-field takeoff and climb
- _____ Short-field takeoff and climb
- _____ Steep Turns
- _____ Steep Spirals
- _____ Maneuvering During Slow Flight
- _____ Power-on Stalls
- _____ Power-off Stalls
- _____ Chandelles
- _____ Lazy Eights
- _____ Eights-on-Pylons
- _____ Power-off 180° accuracy approach and landing
- _____ Go-around procedures
- _____ Normal/Crosswind approach and landing
- _____ Soft-field approach and landing
- _____ Short-field approach and landing
- _____ Postflight procedures

Completion Standards:
This module is complete when the student can maintain flight within ±100 feet altitude, ±10 degrees heading, and ±10 knots airspeed while demonstrating the maneuvers listed in the content of this module.

Recommended Reading:
Flight School
Objective
The objective of Stage 2 is for the student to become proficient in and have an understanding of the following:

Ground Training
- Charts and airspace
- Visual navigation fundamentals
- Using the flight computer
- Weight and balance
- Radio navigation: VOR, ADF, Radar, Transponder, DME, RNAV, VDF, GPS
- Flight planning
- Enroute navigation
- Operational weather factors

Flight Training
- Cross-country flight planning
- National airspace system
- Pilotage and Dead Reckoning
- Radio navigation and radar services
- Diversion
- Lost procedures

Completion Standards
Stage 2 is complete when the student achieves the objective of each module, and can list or describe the correct process or reference for accomplishing elements, exercises and activities. Student shall score at least 80% on the Stage 2 Exam and all deficient areas shall be reconciled to 100%.
Stage 2 / Module 1

Ground Training

Objective:
For the student to gain an understanding of charts and airspace and visual navigation fundamentals.

Content:

- Review objective of Stage 2

VFR charts

- WAC
- Sectional charts
- VFR terminal area charts

Airspace

- Class A
- Class B
- Class C
- Class D
- Class E
- Class G
- Special use airspace
- Other airspace

Visual navigation fundamentals

- Horizontal navigation
- Types of navigation
- Direction and speed combined
- Vertical navigation
- VFR cruise altitude
- Safety altitude
- Time

Completion Standards:
This module is complete when the student has successfully completed all review questions following the assigned reading.

Assignment:
Ground School, Chapters 20, 21, and 23

Flight Training

Objective:
For the student to gain experience in cross-country operations, including a landing at least 100 NM from the departure airport, cross-country flight planning, the national airspace system, pilotage and Dead Reckoning, radio navigation and radar services, and diversion and lost procedures.

Content:

Dual Flight (2.5 hours)

- Cross-country flight planning
- Review national airspace system
- Preflight
- Checklist use
- Short-field takeoff and climb
- Soft-field takeoff and climb
- Pilotage and Dead Reckoning
- Maneuvering under instrument conditions
- Radio navigation and radar services
- Diversion procedures
- Lost procedures
- Simulated engine failure
- Simulated electrical failure
- Simulated radio failure
- Simulated instrument failure
- Short-field approach and landing
- Soft-field approach and landing
- Postflight procedures

Solo Flight(s) (7.0 hours)

- Cross-country flight planning
- Preflight
- Checklist use
- Short-field takeoff and climb
- Soft-field takeoff and climb
- Pilotage and Dead Reckoning
- VOR navigation
- ADF navigation
- Radar services
- Short-field approach and landing
- Soft-field approach and landing
- Postflight procedures

Completion Standards:
This module is complete when the student has gained cross-country flight experience including a landing at least 100 NM from the departure airport, while maintaining the navigation log, keeping flight within ±100 feet altitude, ±10 degrees heading, ±10 knots airspeed, the enroute checkpoints and destination within 3 minutes of the ETA, and can verify the airplane’s position within 1 nautical mile of the planned route at all times.

Recommended Reading:
Flight School
Stage 2 / Module 2

Ground Training

Objective:
For the student to review weight-and-balance and using the flight computer.

Content:

Using the flight computer

- The flight computer for flight planning
- finding TAS
- finding heading and groundspeed
- finding the time en route and fuel requirements
- finding wind components
- conversions
- Calculating the wind velocity in flight

Weight-and-balance

- Weight
 - empty weight
 - gross weight
 - weight of fuel and oil
 - other weight limitations

- Balance
 - moment of a force
 - balancing a loaded airplane
 - finding the position of the CG
 - airplane datums
 - effect of CG position on airplane handling
 - finding the CG of a loaded airplane
 - index units
- Graphical presentation of weight-and-balance data
- Tabular presentation of weight-and-balance data
- Finding the moment index for an item
- Weight-shift calculations
- Weight-change calculations
- CG movement
- Weight-shift and weight-change by formula
- Mean aerodynamic chord

Completion Standards:
This module is complete when the student has successfully completed all review questions following the assigned reading.

Assignment:
Ground School, Chapters 24 and 11

Flight Training

Objective:
For the student to gain additional experience in solo cross-country operations, and be introduced to dual flight in a complex aircraft.

Content:

Dual Flight (2.5 hours)

- Preflight
- Checklist use
- Cockpit management
- Engine starting
- Taxiing
- Normal/Crosswind takeoff and climb
- Cruise procedures
- Power settings
- Constant-speed propeller use
- Retractable landing gear and flaps use
- Power-off 180° accuracy approach and landing
- Go-around procedures
- Normal/Crosswind approach and landing
- Postflight procedures
- Holding patterns

Solo Flight(s) (8.0 hours)

- Cross-country flight planning
- Preflight
- Checklist use
- Short-field takeoff and climb
- Soft-field takeoff and climb
- Pilotage and Dead Reckoning
- VOR navigation
- ADF navigation
- Radar services
- Short-field approach and landing
- Soft-field approach and landing
- Postflight procedures

Completion Standards:
This module is complete when the student has gained cross-country flight experience including a landing at least 50 NM from the departure airport, while maintaining the navigation log, keeping flight within ±100 feet altitude, ±10 degrees heading, ±10 knots airspeed, the enroute checkpoints and destination within 3 minutes of the ETA, and can verify the airplane’s position within 1 nautical mile of the planned route at all times. Student should demonstrate a private pilot proficiency level while performing basic flight operations in a complex aircraft.

Recommended Reading:
Flight School

Minimum 141 Requirements:
- Dual, Complex aircraft 2.5 hours flight (.4 instrument)
- Solo, Cross-country 8.0 hours flight(s)
- Ground instruction 1.5 hours
Ground Training

Objective:
For the student to review radio navigation, including VOR, ADF, radar, the transponder, DME, and RNAV.

Content:

Radio navigation
- **VOR**
- VOR cockpit instruments
- Operational use of the VOR
- Intercepting course with a VOR
- Tracking with a VOR
- NDB
- ADF
- ADF cockpit displays
- Operational use of the ADF
- Radar
- Transponder
- DME
- Pseudo-VORTACs (RNAV)
- GPS
- Bearing changes, time and distance to station

Completion Standards:
This module is complete when the student has successfully completed all review questions following the assigned reading.

Assignment:
Ground School, Chapter 27

Flight Training

Objective:
For the student to gain additional experience in solo cross-country operations, and review commercial maneuvers during a dual flight.

Content:

Dual Flight (2.0 hours)
- Preflight
- Checklist use
- Short-field takeoff and climb
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Chandelles
- Lazy Eights
- Eights-on-Pylons
- Maneuvering solely by reference to instruments
- Soft-field approach and landing
- Postflight procedures

Solo Flight(s) (8.0 hours)
- Cross-country flight planning
- Preflight
- Checklist use
- Short-field takeoff and climb
- Soft-field takeoff and climb
- Steep Spirals
- Pilotage and Dead Reckoning
- VOR navigation
- ADF navigation
- Radar services
- Short-field approach and landing
- Soft-field approach and landing
- Postflight procedures

Completion Standards:
This module is complete when the student has gained cross-country flight experience including a landing at least 50 NM from the departure airport, while maintaining the navigation log, the enroute checkpoints and destination within 3 minutes of the ETA, and can verify the airplane’s position within 1 nautical mile of the planned route at all times. Student should keep flight within ±100 feet altitude, ±10 degrees heading, ±10 knots airspeed while performing the maneuvers listed in the content of this module.

Recommended Reading:
Flight School
Stage 2 / Module 4

Ground Training

Objective:
For the student to review cross-country flight planning and enroute navigation.

Content:
Flight planning
- Weather and operational considerations
- Pre-flight planning
Enroute navigation
- Compensating for wind effect
- Airmanship
- The flight sequence
 - departure from an airport
 - cruise
 - map-reading in flight
 - chart orientation in the airplane
 - log keeping
- Navigation techniques
 - position lines
 - off-course HDG corrections
 - correction angle
 - ratio method
 - inverse-ratio method
- Diversions
 - enroute diversions
 - diversion to an alternate airport
- Navigation operations
 - visibility
 - uncertain of position
 - mental navigation checks
 - low-level navigation
 - ELT

Completion Standards:
This module is complete when the student has successfully completed all review questions following the assigned reading.

Assignment:
Ground School, Chapters 25 and 26

Flight Training

Objective:
For the student to gain additional experience in solo cross-country operations and dual complex aircraft operations.

Content:
Dual Flight (2.0 hours)
- Discussion of performance and limitations
- Discussion of system operations
- Preflight
- Checklist use
- Cockpit management
- Engine starting
- Taxing
- Short-field takeoff and climb
- Cruise procedures
- Power settings
- Constant-speed propeller use
- Retractible landing gear and flaps use
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Maneuvering solely by reference to instruments
- Simulated engine failure
- Simulated systems and equipment failure
- Power-off 180° accuracy approach and landing
- Go-around procedures
- Short-field approach and landing
- Postflight procedures

Solo Flight(s) (8.0 hours)
- Cross-country flight planning
- Preflight
- Checklist use
- Short-field takeoff and climb
- Soft-field takeoff and climb
- Steep Spirals
- Pilotage and Dead Reckoning
- VOR navigation
- ADF navigation
- Radar services
- Short-field approach and landing
- Soft-field approach and landing
- Postflight procedures

Completion Standards:
This module is complete when the student has gained cross-country flight experience including a landing at least 50 NM from the departure airport, while maintaining the navigation log, keeping flight within ±100 feet altitude, ±10 degrees heading, ±10 knots airspeed, the enroute checkpoints and destination within 3 minutes of the ETA, and can verify the airplane’s position within 1 nautical mile of the planned route at all times. Student should demonstrate a private pilot proficiency level while performing the maneuvers listed in a complex aircraft.

Recommended Reading:
Flight School
Ground Training

Objective:
For the student to review operational weather factors.

Content:
Operational weather factors
- Icing
 - structural icing
 - induction icing
 - instrument icing
- Visibility
 - particles in the air
 - inversions and reduced visibility
 - condensation
 - fog
- Turbulence
 - localized friction effects
 - winds associated with mountains
 - flying in turbulence
 - clear air turbulence
 - classification of turbulence
- Windshear
- Thunderstorms
- Microburst

Completion Standards:
This module is complete when the student has successfully completed all review questions following the assigned reading.

Assignment:
Ground School, Chapter 17

Flight Training

Objective:
For the student to obtain the solo long-cross-country requirements required for the Commercial certificate, and to review the commercial maneuvers during dual flight.

Content:
Dual Flight (2.0 hours)
- Preflight
- Checklist use
- Short-field takeoff and climb
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Chandelles
- Lazy Eights
- Eights-on-Pylons
- Maneuvering solely by reference to instruments
- Short-field approach and landing
- Postflight procedures

Solo Flight (7.0 hours)*
- Cross-country flight planning
- Preflight
- Checklist use
- Short-field takeoff and climb
- Soft-field takeoff and climb
- Steep Spirals
- Pilotage and Dead Reckoning
- VOR navigation
- ADF navigation
- Radar services
- Short-field approach and landing
- Soft-field approach and landing
- Postflight procedures

* Flight must include landings at a minimum of three points, one of which is at least 250 nautical miles from the original departure point (except for Hawaii; one segment of at least 150 NM).

Completion Standards:
This module is complete when the student has gained cross-country flight experience including at least three landings, one of which is at least 250 NM from the departure airport, while maintaining the navigation log, the enroute checkpoints and destination within 3 minutes of the ETA, and can verify the airplane’s position within 1 nautical mile of the planned route at all times. Student should keep flight within ±100 feet altitude, ±10 degrees heading, ±10 knots airspeed while performing the maneuvers listed in the content of this module.

Recommended Reading:
Flight School
Stage 2 / Module 6 and Stage Check

Ground Training

Objective:
For the student to review Stage 2 objectives in preparation of the Stage 2 Exam.

Content:
- Preflight
- Checklist use
- Normal/Crosswind takeoff and climb
- Soft-field takeoff and climb
- Short-field takeoff and climb
- Steep Spirals
- VOR navigation
- ADF navigation
- Go-around procedures
- Soft-field procedure and climb
- Postflight procedures

Completion Standards:
Stage 2 Exam must be passed with a minimum score of 80% and reconciled to 100%.

Assignment:
Stage 2 Exam

Flight Training

Objective:
For the student to review commercial maneuvers according to commercial pilot practical test standards. For the Stage Check, student should demonstrate skill in the following areas according to the completion standards.

Content:

Dual Flight (2.5 hours)
- Preflight
- Checklist use
- Soft-field takeoff and climb
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Spin awareness
- Chandelles
- Lazy Eights
- Eights-on-Pylons
- Maneuvering under instrument conditions
- VOR navigation
- ADF navigation
- Power-off 180° accuracy approach and landing
- Go-around procedures
- Soft-field approach and climb
- Postflight procedures

Solo Flight(s) (2.0 hours)
- Preflight
- Checklist use
- Normal/Crosswind takeoff and climb
- Soft-field takeoff and climb
- Short-field takeoff and climb
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Chandelles
- Lazy Eights
- Eights-on-Pylons
- VOR navigation
- ADF navigation
- Power-off 180° accuracy approach and landing
- Go-around procedures
- Normal/Crosswind approach and landing
- Soft-field approach and landing
- Short-field approach and landing
- Postflight procedures

Completion Standards:
This module is complete when the student can maintain flight within ±100 feet altitude, ±10 degrees heading, and ±10 knots airspeed while demonstrating the maneuvers listed in the content of this module.

Recommended Reading:
Flight School
Commercial Pilot Test Prep, Chapters 5, 6 and 7
Optional Stage 2 Review

Date of Completion: ____________________________
Signature: _____________________________________
Time Flown: ___________________________________
Stage 3
Complex Aircraft and Night Flying Experience

Objective
The objective of Stage 3 is for the student to become proficient in and have an understanding of the following:

Ground Training
- Complex aircraft:
 - engines
 - engine operation
 - systems
 - airplane performance factors
 - takeoff and landing performance
 - enroute performance
- Airports and airport operations

Flight Training
- Complex airplane operations:
 - performance and limitations
 - operation of systems
 - preflight inspection
 - cockpit management
 - taxiing
 - slow flight
 - stall series
 - steep turns
 - steep spirals
 - normal, crosswind, short and soft takeoffs and landings
 - power-off 180° accuracy approach and landing
 - airport and runway markings and lighting
 - after landing
 - parking and securing
- Supplemental oxygen (discussion)
- Pressurization (discussion)
- Night flight operations

Completion Standards
Stage 3 is complete when the student achieves the objective of each module, and can list or describe the correct process or reference for accomplishing elements, exercises and activities. Student shall score at least 80% on the Stage 3 Exam, and all deficient areas shall be reconciled to 100%.
Stage 3 / Module 1

Ground Training

Objective:
For the student to gain an understanding of engines and engine operations, with special attention to complex aircraft application.

Content:
___ Review objective of Stage 3

Engine
___ Four-stroke engine cycle
___ Valves and valve timing
___ Ignition
___ Starter
___ Exhaust system
___ Carburetor
 ___ Accelerator pump
 ___ Idling system
___ Fuel and air mixture control
___ Abnormal combustion
___ Carburetor ice
___ Fuel injection systems

Engine operation
___ Starting the engine
___ Stopping the engine
___ Changing power setting with a constant-speed propeller
___ Engine handling
___ Rough running
___ Cross-checking engine instruments
___ Taxiing
___ Engine failure in flight
___ Engine fire in flight
___ Engine fire on startup

Completion Standards:
This module is complete when the student has successfully completed all review questions following the assigned reading.

Assignment:
Ground School, Chapter 5

Flight Training

Objective:
For the student to review commercial maneuvers during solo flight and gain additional experience in dual complex aircraft operations, including a maximum weight takeoff and landing.

Content:

Dual Flight (2.5 hours)
___ Discussion of supplemental oxygen and pressurization
___ Preflight
___ Checklist use and cockpit management
___ Taxiing
___ Normal, maximum-weight, takeoff and climb
___ Steep Turns
___ Steep Spirals
___ Maneuvering During Slow Flight
___ Power-on Stalls
___ Power-off Stalls
___ Maneuvering solely by reference to instruments
___ Simulated engine failure
___ Simulated system and equipment failure
___ Normal approach and landing
___ Parking and securing
___ Postflight procedures

Solo Flight(s) (1.5 hours)
___ Preflight
___ Checklist use
___ Normal/Crosswind takeoff and climb
___ Soft-field takeoff and climb
___ Short-field takeoff and climb
___ Steep Turns
___ Steep Spirals
___ Maneuvering During Slow Flight
___ Power-on Stalls
___ Power-off Stalls
___ Chandelles
___ Lazy Eights
___ Eights-on-Pylons
___ VOR and ADF navigation
___ Power-off 180° accuracy approach and landing
___ Go-around procedures
___ Normal/Crosswind approach and landing
___ Soft-field approach and landing
___ Short-field approach and landing
___ Postflight procedures

Completion Standards:
This module is complete when the student can maintain flight within ±100 feet altitude, ±10 degrees heading, ±10 knots airspeed while performing the maneuvers listed in the content of this module.

Recommended Reading:
Flight School
Stage 3 / Module 2

Ground Training

Objective:
For the student to gain an understanding of systems and airplane performance factors, with special attention to complex aircraft applications.

Content:
Aircraft systems
- Fuel system
- Oil system
- Cooling system
- Electrical system
- Vacuum system

Airplane performance factors
- Airworthiness
- Airframe limitations
- Air density

Completion Standards:
This module is complete when the student has successfully completed all review questions following the assigned reading.

Assignment:
Ground School, Chapters 6 and 8

Minimum 141 Requirements:
Dual, Cross-country, Night,
Complex aircraft 4.0 hours flight (.8 instrument)
Solo, Local 1.5 hours flight(s)
Ground instruction 1.5 hours

Flight Training

Objective:
For the student to gain the required experience of a night cross-country, in a complex aircraft during dual flight operations, and additional experience performing the commercial maneuvers.

Content:
Dual Flight (4.0 hours)*
- Discussion of night flying regulations
- Cross-country planning
- Preflight
- Use of checklists and cockpit management
- Normal/Crosswind takeoff and climb
- Steep Spirals
- Pilote and Dead Reckoning
- Radio navigation and radar services
- Diversion and lost procedures
- Simulated engine failure
- Simulated systems and equipment failure
- Maneuvering under instrument conditions
- Normal/Crosswind approach and landing
- Postflight procedures

Solo Flight(s) (1.5 hours)
- Preflight
- Checklist use
- Normal/Crosswind takeoff and climb
- Soft-field takeoff and climb
- Short-field takeoff and climb
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on and -off Stalls
- Chandelles
- Lazy Eights
- Eights-on-Pylons
- VOR and ADF navigation
- Power-off 180° accuracy approach and landing
- Go-around procedures
- Normal/Crosswind approach and landing
- Soft-field approach and landing
- Short-field approach and landing
- Postflight procedures

Completion Standards:
This module is complete when the student has completed the required night cross-country in a complex aircraft. Student will continue practicing all commercial maneuvers according to the Commercial Practical Test Standards. Upon completion of this module, student should receive the complex endorsement to conduct solo complex aircraft operations.

Recommended Reading:
Flight School

Date of Completion: ____________________________
Signature: ____________________________
Time Flown: ____________________________
Instructor Note: Follow the format below when signing-off endorsements for your students. (From AC 61-65)

Endorsement for a pilot to act as PIC in a complex airplane: 14 CFR §61.31(e)

I certify that (First name, MI, Last name), (pilot certificate), (certificate number) has received the required training of §61.31(e) in a (make and model of complex airplane). I have determined that he/she is proficient in the operation and systems of a complex airplane.

S/S [date] J. Jones 654321 CFI Exp. 11-30-11
Ground Training

Objective:
For the student to gain an understanding of takeoff and landing performance, specifically with reference to complex aircraft application.

Content:

Takeoff performance
- Factors affecting takeoff performance
- Takeoff distance graph
- Different presentations of performance data

Landing performance
- Factors affecting landing performance
- Landing distance graph
- Landing distance table
- Wake turbulence
 - avoiding wake turbulence
 - jet blast
- Ground effect
 - increased lifting ability
 - reduced drag
 - ground effect during landing
 - ground effect during takeoff

Windshear
- Effects of windshear on an airplane
- Overshoot and undershoot effect
- Taxing

Completion Standards:
This module is complete when the student has successfully completed all review questions following the assigned reading.

Assignment:
Ground School, Chapter 9

Flight Training

Objective:
For the student to demonstrate competency of commercial maneuvers during dual flight, and gain experience in solo complex aircraft operations.

Content:

Dual Flight (2.0 hours)
- Preflight
- Checklist use
- Short-field takeoff and climb
- Steep Turns
- Steep Spirals
- Maneuvering during slow flight
- Power-on stalls
- Power-off stalls
- Chandelles
- Lazy Eights
- Eights-on-Pylons
- Maneuvering solely by reference to instruments
- Short-field approach and landing
- Postflight procedures

Solo Flight (1.5 hours)
- Preflight
- Checklist use
- Normal/Crosswind takeoff and climb
- Short-field takeoff and climb
- Soft-field takeoff and climb
- Cruise procedures
- Power setting and mixture control
- Steep Turns
- Steep Spirals
- Maneuvering during slow flight
- Power-on stalls
- Power-off stalls
- Normal/Crosswind approach and landing
- Short-field approach and landing
- Soft-field approach and landing
- Postflight procedures

Completion Standards:
This module is complete when the student can demonstrate commercial maneuvers according to the commercial practical test standards, and perform complex aircraft operations accurately and smoothly. Student should make 3 solo takeoffs and landings to a full stop in the complex aircraft.

Recommended Reading:
Flight School
Ground Training

Objective:
For the student to gain an understanding of enroute performance, specifically with reference to complex aircraft applications.

Content:
Enroute performance
- Cruise altitude and power setting
- Indicated outside air temperature
- Presentation of performance data
- Fuel consumption
- Effect of wind in cruise
- Climb performance
 - maximum rate of climb
 - cruise or normal climb
- Cruise performance
 - specific range
 - flying for endurance

Completion Standards:
This module is complete when the student has successfully completed all review questions following the assigned reading.

Assignment:
Ground School, Chapter 10

Flight Training

Objective:
For the student to demonstrate proficiency in the commercial maneuvers during a dual flight, and gain additional experience during solo complex aircraft operations.

Content:
Dual Flight (2.0 hours)
- Preflight
- Checklist use
- Soft-field takeoff and climb
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Chandelles
- Lazy Eights
- Eights-on-Pylons
- Maneuvering solely by reference to instruments
- Soft-field approach and landing
- Postflight procedures

Solo Flight (1.5 hours)
- Preflight
- Checklist use
- Normal/Crosswind takeoff and climb
- Short-field takeoff and climb
- Soft-field takeoff and climb
- Cruise procedures
- Power setting and mixture control
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Normal/Crosswind approach and landing
- Short-field approach and landing
- Soft-field approach and landing
- Postflight procedures

Completion Standards:
This module is complete when the student can demonstrate commercial maneuvers according to the commercial practical test standards, and perform complex aircraft operations accurately and smoothly. Student should make 3 solo takeoffs and landings to a full stop in the complex aircraft.

Recommended Reading:
Flight School
Ground Training

Objective:
For the student to review airports and airport operations, with specific reference to complex aircraft applications.

Content:
Airports
- Taxiway and runway markings
- LAHSO
- Airport lighting
Airport operations
- Listening to the ATIS
- Before taxiing
- Standard traffic pattern
- Legs of a traffic pattern
- Wind effect in the traffic pattern
- Departing the traffic pattern
- Using the radio
- Entering the traffic pattern
- Airport radar services

Completion Standards:
This module is complete when the student has successfully completed all review questions following the assigned reading.

Assignment:
Ground School, Chapter 22

Flight Training

Objective:
For the student to demonstrate proficiency in the commercial maneuvers during a dual flight, and gain additional experience during solo complex aircraft operations.

Content:
Dual Flight (2.0 hours)
- Preflight
- Checklist use
- Short-field takeoff and climb
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Chandelles
- Lazy Eights
- Eights-on-Pylons
- Maneuvering solely by reference to instruments
- Short-field approach and landing
- Postflight procedures

Solo Flight(s) (1.0 hour)
- Preflight
- Checklist use
- Normal takeoff and climb
- Crosswind takeoff and climb
- Short-field takeoff and climb
- Soft-field takeoff and climb
- Cruise procedures
- Power setting and mixture control
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Normal approach and landing
- Crosswind approach and landing
- Short-field approach and landing
- Soft-field approach and landing
- Postflight procedures

Completion Standards:
This module is complete when the student can demonstrate commercial maneuvers according to the commercial practical test standards, and perform complex aircraft operations accurately and smoothly. Student should make 4 solo takeoffs and landings to a full stop in the complex aircraft. Upon completion of this module, student will have the required 10 takeoffs and landings and the 5.0 hours of solo flight in a complex aircraft.

Recommended Reading:
Flight School
Stage 3 / Module 6 and Stage Check

Ground Training

Objective:
For the student to review Stage 3 objectives in preparation of the Stage 3 Exam.

Content:
- Engines
- Engine operation
- Systems
- Airplane performance factors
- Takeoff and landing performance
- Enroute performance
- Airports and airport operations

Completion Standards:
Stage 3 Exam must be passed with a minimum score of 80%, and reconciled to 100%.

Assignment:
Stage 3 Exam

Flight Training

Objective:
For the student to review complex aircraft operations and continue to practice the commercial maneuvers during solo flight. For the Stage Check, student should demonstrate skill in the following areas according to completion standards.

Content:
Dual Flight (2.5 hours)
- Preflight
- Checklist use
- Cockpit management
- Normal/Crosswind takeoff and climb
- Power setting and mixture control
- Cruise procedures
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Maneuvering under instrument conditions
- Unusual attitude recovery
- Simulated engine failure
- Simulated systems and equipment failure
- Simulated instrument failure
- Simulated fire in flight
- Normal/Crosswind approach and landing
- Power-off 180° accuracy approach and landing
- Go-around procedures
- Postflight procedures

Solo Flight(s) (1.5 hours)
- Preflight
- Checklist use
- Normal/Crosswind takeoff and climb
- Soft-field takeoff and climb
- Short-field takeoff and climb
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Chandelles
- Lazy Eights
- Eights-on-Pylons
- VOR navigation
- ADF navigation
- Power-off 180° accuracy approach and landing
- Go-around procedures
- Normal/Crosswind approach and landing
- Soft-field approach and landing
- Short-field approach and landing
- Postflight procedures

Completion Standards:
This module is complete when the student can demonstrate complex airplane operations and commercial maneuvers, maintaining commercial pilot practical test standards.

Recommended Reading:
Flight School
Commercial Pilot Test Prep, Chapters 2 and 4

Minimum 141 Requirements:
- Dual, Complex aircraft 2.5 hours flight (.4 instrument)
- Solo, Local 1.5 hours flight(s)
- Stage check
- Ground instruction 1.5 hours
- Stage exam
Optional **Stage 3 Review**

Lesson Time:
Dual 1.5 hours flight, or whatever is necessary to meet objective
Solo 1.5 hours flight, or whatever is necessary to meet objective
Ground instruction 1.5 hours, or whatever is necessary to meet objective

Flight Training

Objective:
For the student to review all Stage 3 tasks and meet all objectives.

Content:

Dual Flight (1.5 hours)
- Preflight
- Checklist use and cockpit management
- Normal/Crosswind takeoff and climb
- Power setting and mixture control
- Cruise procedures
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Maneuvering under instrument conditions
- Unusual attitude recovery
- Simulated engine failure
- Simulated systems and equipment failure
- Simulated instrument failure
- Simulated fire in flight
- Normal/Crosswind approach and landing
- Power-off 180° accuracy approach and landing
- Go-around procedures
- Postflight procedures

Solo Flight (1.5 hours)
- Preflight
- Checklist use
- Normal/Crosswind takeoff and climb
- Soft-field takeoff and climb
- Short-field takeoff and climb
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Chandelles
- Lazy Eights
- Eights-on-Pylons
- VOR and ADF navigation
- Power-off 180° accuracy approach and landing
- Go-around procedures
- Normal/Crosswind approach and landing
- Soft-field approach and landing
- Short-field approach and landing
- Postflight procedures

Completion Standards:
This module is complete when the student can demonstrate complex airplane operations and commercial maneuvers, maintaining commercial pilot practical test standards.

Recommended Reading:
Flight School
Stage 4
Prep for Checkride

Objective
The objective of Stage 4 is for the student to become proficient in and have an understanding of the following:

Ground Training
- Heating effects in the atmosphere
- Wind
- Clouds and thunderstorms
- Air masses and frontal weather
- Weather reports and forecasts
- Commercial Practical Test Standards
- Prep for oral portion of checkride

Flight Training
- Weather information
- Physiological aspects of night flying
- Lighting and equipment for night flying
- Emergency descent
- Emergency approach and landing
- Systems and equipment malfunctions
- Emergency equipment and survival gear
- The experience and knowledge required by the Commercial License
- All Commercial maneuvers and experience required by PTS
- Sign-off for the commercial checkride

Completion Standards
Stage 4 is complete when the student achieves the objective of each module, and can list or describe the correct process or reference for accomplishing elements, exercises and activities. Student shall score at least 80% on the Stage 4 Exam, and all deficient areas shall be reconciled to 100%. Students must take and pass the FAA Commercial Written Exam. At the completion of this stage, student is signed off to take the Commercial Pilot checkride.
Stage 4 / Module 1

Ground Training

Objective:
For the student to gain an understanding of meteorology, specifically the heating effects in the atmosphere and wind.

Content:
___ Review objective of Stage 4

Atmosphere
___ Air density
___ Subdivision of the atmosphere
___ Air is a mixture of gases
___ Standard atmosphere
___ Heat exchange processes
 ___ sun
 ___ terrestrial re-radiation
 ___ general circulation
 ___ local heating and cooling
 ___ local air movements
 ___ temperature inversions

Wind
___ How wind is described
___ Causes of wind
___ Coriolis effect
___ Geostrophic wind
___ Gradient wind
___ Surface wind
___ Wind in the tropics
___ High-level weather
 ___ tropopause
 ___ jetstreams

Completion Standards:
This module is complete when the student has successfully completed all review questions following the assigned reading.

Assignment:
Ground School, Chapters 13 and 14

Flight Training

Objective:
For the student to gain additional night flight experience.

Content:

Dual Flight (2.5 hours)
___ Weather information
___ Discussion of physiological aspects of night flying
___ Discussion of lighting and equipment for night flying
___ Preflight
___ Checklist use
___ Normal/Crosswind takeoff and climb
___ Steep Turns
___ Steep Spirals
___ Maneuvering During Slow Flight
___ Power-on Stalls
___ Power-off Stalls
___ Maneuvering solely by reference to instruments
___ Maneuvering under instrument conditions
___ Simulated emergency descent
___ Simulated emergency approach and landing
___ Simulated systems and equipment malfunction
___ Normal/Crosswind approach and landing
___ Power-off 180° accuracy approach and landing
___ Go-around procedures
___ Postflight procedures

Solo Flight (1.5 hours)
___ Preflight
___ Checklist use
___ Normal/Crosswind takeoff and climb (4)
___ Maneuvering During Slow Flight
___ Power-on Stalls
___ Power-off Stalls
___ Steep Turns
___ Steep Spirals
___ Normal/Crosswind approach and landing (4)
___ Power-off 180° accuracy approach and landing
___ Go-around procedures
___ Postflight procedures

Completion Standards:
This module is complete when the student can demonstrate correct operating procedures for night flying. Flight must be maintained within ±100 feet altitude, ±10 degrees heading, and ±10 knots airspeed while performing the maneuvers listed in the content of this module.

Recommended Reading:
Flight School
Ground Training

Objective:
For the student to gain an understanding of meteorology, specifically clouds and thunderstorms, and air masses and frontal weather.

Content:

Clouds
- Naming of clouds
- Moisture in the atmosphere
- Adiabatic processes
- Formation of clouds
- Precipitation from clouds
- High-level clouds
- Middle-level clouds
- Low-level clouds

Thunderstorms
- Life cycle of a thunderstorm
- Severe thunderstorms
- Danger of thunderstorms
- Lifted index
- Clouds at high levels
- Airborne weather radar

Air masses

Frontal weather
- Warm front
- Cold front
- Occluded front
- Stationary front
- Development and decay of fronts
- Depressions, areas of low pressure
- Anticyclones, areas of high pressure

Completion Standards:
This module is complete when the student has successfully completed all review questions following the assigned reading.

Assignment:
Ground School, Chapters 15 and 16

Flight Training

Objective:
For the student to review commercial maneuvers and instrument flight, and for the student to gain additional solo-night experience.

Content:

Dual Flight (2.0 hours)
Note: Flight requires an instrument-rated aircraft.
- Preflight
- Cockpit management
- VFR:
 - Short-field takeoff and climb
 - Steep Turns
 - Steep Spirals
 - Maneuvering During Slow Flight
 - Power-on Stalls
 - Power-off Stalls
 - Chandelles
 - Lazy Eights
 - Eights-on-Pylons
 - Maneuvering solely by reference to instruments
 - Short-field approach and landing
 - Power-off 180° accuracy approach and landing
 - Go-around procedures
- IFR:
 - VOR holding procedures
 - VOR instrument approach
 - Missed approach procedures
 - Postflight procedures

Solo Flight (1.5 hours)
- Preflight
- Checklist use
- Normal/Crosswind takeoff and climb (4)
- Maneuvering During Slow Flight
- Power-on Stalls
- Power-off Stalls
- Steep Turns
- Steep Spirals
- Normal/Crosswind approach and landing (4)
- Power-off 180° accuracy approach and landing
- Go-around procedures
- Postflight procedures

Completion Standards:
This module is complete when the student has gained additional solo night flying experience and has reviewed commercial maneuvers and instrument flying procedures. Commercial maneuvers must be performed according to Commercial practical test standards, and instrument flight must maintain specified minimums.

Recommended Reading:
Flight School

Minimum 141 Requirements:
Dual, Local 2.0 hours flight (.4 instrument)
Solo, Local, Night 1.5 hours flight
Ground instruction 2.0 hours
Ground Training

Objective:
For the student to review weather reports and forecasts.

Content:
- Obtaining a weather briefing
- Weather reports
 - Weather depiction charts
 - Surface analysis charts
 - Radar summary charts
 - METAR
 - Pilot weather reports (PIREPs)
- Weather forecasts
 - Low-level significant weather prognostic charts
 - Terminal aerodrome forecasts (TAF)
 - Aviation area forecasts (FA)
 - Weather advisories
 - Winds and temperatures aloft forecasts (FB)
 - Convective outlook charts (AC)
 - Staying informed in the air
 - Constant pressure analysis charts
 - Other weather information
 - RADAT
 - Composite moisture stability chart
 - Radar weather reports (SD)

Completion Standards:
This module is complete when the student has successfully completed all review questions following the assigned reading.

Assignment:
Ground School, Chapter 18

Flight Training

Objective:
For the student to gain experience in solo night cross-country operations, and additional proficiency in commercial maneuvers and instrument flight.

Content:
- *Dual Flight (2.0 hours)*
 - Preflight
 - Cockpit management
 - VFR
 - Soft-field takeoff and climb
 - Steep Turns
 - Steep Spirals
 - Maneuvering During Slow Flight
 - Power-on Stalls
 - Power-off Stalls
 - Chandelles
 - Lazy Eights
 - Eights-on-Pylons
 - Maneuvering solely by reference to instruments
 - Soft-field approach and landing
 - Power-off 180° accuracy approach and landing
 - Go-around procedures
 - IFR
 - NDB holding procedures
 - NDB instrument approach
 - Missed approach procedures
 - Postflight procedures
- *Solo Flight (2.0 hours)*
 - Cross-country flight planning
 - Preflight
 - Checklist use
 - Normal/Crosswind takeoff and climb (2)
 - Steep Spirals
 - Cross-country procedures
 - Pilotage and Dead Reckoning
 - VOR navigation
 - ADF navigation
 - Radar services
 - Normal/Crosswind approach and landing (2)
 - Power-off 180° accuracy approach and landing
 - Go-around procedures
 - Postflight procedures

Completion Standards:
This module is complete when the student has gained additional solo night flying experience and has reviewed commercial maneuvers and instrument flying procedures. Commercial maneuvers must be performed according to commercial practical test standards, and instrument flight must maintain specified minimums. Upon completion of this module, student will have the required 5 hours of solo night flying experience with 10 takeoffs and landings (with each landing involving a flight with a traffic pattern) at an airport with an operating control tower, and 40 hours of solo cross-country experience.

Recommended Reading:
Flight School
Ground Training

Objective:
For the student to gain complete proficiency in all areas included in the Commercial Practical Test Standards.

Content:
____ Review the Commercial Practical Test Standards

Assignment:
Review the Commercial Practical Test Standards

Flight Training

Objective:
For the student to gain proficiency in the commercial maneuvers and instrument flight operations.

Content:
Dual Flight (2.0 hours)
Note: Flight requires an instrument-rated airplane
___ Preflight
___ Cockpit management
___ VFR:
 ____ Normal/Crosswind takeoff and climb
 ____ Steep Turns
 ____ Steep Spirals
 ____ Maneuvering During Slow Flight
 ____ Power-on Stalls
 ____ Power-off Stalls
 ____ Chandelles
 ____ Lazy Eights
 ____ Eights-on-Pylons
 ____ Maneuvering solely by reference to instruments
 ____ Normal/Crosswind approach and landing
 ____ Power-off 180° accuracy approach and landing
 ____ Go-around procedures
___ IFR:
 ____ ILS instrument approach
 ____ Missed approach procedures
 ____ Postflight procedures
Solo Flight(s) (1.5 hours)
___ Preflight
___ Checklist use
___ Normal/Crosswind takeoff and climb
___ Soft-field takeoff and climb
___ Short-field takeoff and climb
___ Steep Turns
___ Steep Spirals
___ Maneuvering During Slow Flight
___ Power-on Stalls
___ Power-off Stalls
___ Chandelles
___ Lazy Eights
___ Eights-on-Pylons
___ VOR navigation
___ ADF navigation
___ Power-off 180° accuracy approach and landing
___ Go-around procedures
___ Normal/Crosswind approach and landing
___ Soft-field approach and landing
___ Short-field approach and landing
___ Postflight procedures

Completion Standards:
This module is complete when all the commercial maneuvers are completed according to PTS, and instrument flight maintains specified minimums.

Recommended Reading:
Flight School

Minimum 141 Requirements:
Dual, Local 2.0 hours flight (.4 instrument)
Solo, Local 1.5 hours flight(s)
Ground instruction 2.0 hours
Ground Training

Objective:
For the student to review all areas of aeronautical knowledge required of the Commercial certificate.

Content:
- Review all Commercial Pilot subject matter from the Commercial Practical Test Standards
- Suggested review material: Commercial Oral Exam Guide

Completion Standards:
Review Commercial Practical Test Standards in preparation of the checkride.

Assignment:
Suggested reading: review Commercial Oral Exam Guide

Flight Training

Objective:
For the student to gain proficiency in the commercial maneuvers and complex aircraft operations.

Content:
- Dual Flight (2.0 hours)
 - Preflight
 - Cockpit management
 - VFR:
 - Normal/Crosswind takeoff and climb
 - Steep Turns
 - Steep Spirals
 - Maneuvering During Slow Flight
 - Power-on Stalls
 - Power-off Stalls
 - Chandelles
 - Lazy Eights
 - Eights-on-Pylons
 - Maneuvering solely by reference to instruments
 - Simulated engine failure
 - Simulated systems and equipment failure
 - Normal/Crosswind approach and landing
 - Power-off 180° accuracy approach and landing
 - Go-around procedures
 - IFR:
 - Simulated instrument failure
 - ILS instrument approach
 - Missed approach procedures
 - Postflight procedures
- Solo Flight(s) (1.5 hours)
 - Preflight
 - Checklist use
 - Normal/Crosswind takeoff and climb
 - Soft-field takeoff and climb
 - Short-field takeoff and climb
 - Steep Turns
 - Steep Spirals
 - Maneuvering During Slow Flight
 - Power-on Stalls
 - Power-off Stalls
 - Chandelles
 - Lazy Eights
 - Eights-on-Pylons
 - VOR navigation
 - ADF navigation
 - Power-off 180° accuracy approach and landing
 - Go-around procedures
 - Normal/Crosswind approach and landing
 - Soft-field approach and landing
 - Short-field approach and landing
 - Postflight procedures

Completion Standards:
This module is complete when all the commercial maneuvers are completed according to PTS, and instrument flight maintains specified minimums.

Recommended Reading:
Flight School
Stage 4 / Module 6 and Stage Check

Ground Training

Objective:
For the student to review all Stage 4 objectives, in preparation of the Stage 4 Exam.

Content:
- Heating effects in the atmosphere
- Wind
- Clouds and thunderstorms
- Air masses and frontal weather
- Weather reports and forecasts
- Commercial practical test standards
- Areas of knowledge required of the commercial pilot

Completion Standards:
Stage 4 Exam must be passed with a minimum score of 80%, and reconciled to 100%.

Assignment:
Stage 4 Exam

Flight Training

Objective:
For the student to review all the commercial pilot skill requirements. For the Stage Check, student should demonstrate skill in the following areas according to the completion standards.

Content:
Dual Flight (2.5 hours)
Note: Flight requires an instrument-rated airplane
- Cross-country flight planning (VFR, IFR)
- Preflight
- Compliance with ATC procedures and clearances
- Intercept and track VOR radial and NDB bearing
- Holding procedures
- Simulated engine, instrument, and radio failure
- Recover from unusual attitudes
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on and off Stalls
- Chandelles
- Lazy Eights
- Eights-on-Pylons
- Maneuvering solely by reference to instruments
- Normal/Crosswind approach and landing
- Short-field approach and landing
- Soft-field approach and landing
- Power-off 180° accuracy approach and landing
- Go-around procedures
- VOR, NDB, ILS approaches
- Postflight procedures

Solo Flight(s) (1.5 hours)
- Preflight
- Checklist use
- Normal/Crosswind takeoff and climb
- Soft-field takeoff and climb
- Short-field takeoff and climb
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on and off Stalls
- Chandelles
- Lazy Eights
- Eights-on-Pylons
- VOR and ADF navigation
- Power-off 180° accuracy approach and landing
- Go-around procedures
- Normal/Crosswind approach and landing
- Soft-field approach and landing
- Short-field approach and landing
- Postflight procedures

Completion Standards:
This module is complete when all the maneuvers and areas of aeronautical knowledge are demonstrated according to the Commercial PTS.

Recommended Reading:
- Flight School
- Commercial Pilot Test Prep, Chapters 8, 9 and 11

Minimum 141 Requirements:
- Dual, Local 2.5 hours flight (.4 instrument)
- Solo, Local 1.5 hours flight(s)
- Stage check
- Ground instruction 1.5 hours
- Stage exam
Flight Training

Objective:
For the student to become proficient in all commercial maneuvers, in preparation for the checkride.

Content:

Dual Flight (1.5 hours)
Note: Flight requires an instrument-rated airplane

- Cross-country flight planning (VFR, IFR)
- Preflight
- Instrument cockpit check
- Compliance with ATC procedures and clearances
- Intercept and track VOR radial
- Intercept and track NDB bearing
- Holding procedures
- Simulated loss of communications
- Simulated engine failure
- Simulated instrument failure
- Simulated radio failure
- Recover from unusual attitudes
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on and off Stalls
- Chandelles
- Lazy Eights
- Eights-on-Pylons
- Normal/Crosswind approach and landing
- Short-field approach and landing
- Soft-field approach and landing
- Power-off 180° accuracy approach and landing
- Go-around procedures
- VOR, NDB, ILS approaches
- Postflight procedures

Solo Flight (1.5 hours)

- Preflight
- Checklist use
- Normal/Crosswind takeoff and climb
- Soft-field takeoff and climb
- Short-field takeoff and climb
- Steep Turns
- Steep Spirals
- Maneuvering During Slow Flight
- Power-on and off Stalls
- Chandelles
- Lazy Eights
- Eights-on-Pylons
- VOR and ADF navigation
- Power-off 180° accuracy approach and landing
- Go-around procedures
- Normal/Crosswind approach and landing
- Soft-field approach and landing
- Short-field approach and landing
- Postflight procedures

Completion Standards:
This module is complete when all the commercial maneuvers are completed according to PTS.

Recommended Reading:
Flight School
Instructor Note: Follow the formats below when signing-off endorsements for your students. (From AC 61-65)

1. **Endorsement for aeronautical knowledge: 14 CFR §61.35(a)(1) and §61.123(c)**

 I certify that (FN, MI, LN) has received the required training of §61.125. I have determined that he/she is prepared for the (name the knowledge test).

 S/S [date] J. Jones 654321 CFI Exp. 11-30-11

2. **Endorsement for flight proficiency practical test 14 CFR §61.123(e) and §61.127**

 I certify that (FN, MI, LN) has received the required training of §61.127 and §61.129. I have determined that he/she is prepared for the (name the practical test).

 S/S [date] J. Jones 654321 CFI Exp. 11-30-11

Confirm for the Checkride:

- Identification with photo and signature
- Pilot certificate current
- Current second-class medical (third-class for Practical Test, second-class to exercise privileges)
- Completed 8710-1 application with instructor’s signature
- Computer test report
- Pilot logbook with instructor endorsements
- School graduation certificate
- Materials necessary for planning a cross-country flight
- Examiner’s fee
FAA Form 8710-1, Airman Certificate
and/or Rating Application
Supplemental Information and Instructions

Paperwork Reduction Act Statement:
The information collected on this form is necessary to determine applicant eligibility for airman ratings. We estimate it will take 15 minutes to complete this form. The information collected is required to obtain a benefit and becomes part of the Privacy Act system of records DOT/FAA 847, General Air Transportation Records on Individuals. Please note that an agency may not conduct or sponsor, and a person is not required to respond to, a collection of information unless it displays a currently valid OMB control number. The OMB control number associated with this collection is 2120-0021.

Privacy Act
The information on the accompanying form is solicited under authority of Title 14 of the Code of Federal Regulations (14 CFR), Part 61. The purpose of this data is to be used to identify and evaluate your qualifications and eligibility for the issuance of an airman certificate and/or rating. Submission of all requested data is mandatory, except for the Social Security Number (SSN) which is voluntary. Failure to provide all the required information would result in you not being issued a certificate and/or rating. The information would become part of the Privacy Act system of records DOT/FAA 847, General Air Transportation Records on Individuals. The information collected on this form would be subject to the published routine uses of DOT/FAA 847. Those routine uses are: (a) To provide basic airmen certification and qualification information to the public upon request. (b) To disclose information to the national Transportation Safety Board (NTSB) in connection with its investigation responsibilities. (c) To provide information about airmen to Federal, state, and local law enforcement agencies when engaged in the investigation and apprehension of drug violators. (d) To provide information about enforcement actions arising out of violations of the Federal Aviation regulations to government agencies, the aviation industry, and the public upon request. (e) To disclose information to another Federal agency, or to a court or an administrative tribunal, when the Government or one of its agencies is a party to a judicial proceeding before the court or involved in administrative proceedings before the tribunal.

Submission of your Social Security Number is voluntary. Disclosure of your SSN will facilitate maintenance of your records which are maintained in alphabetical order and cross-referenced with your SSN and airman certificate number to provide prompt access. In the event of nondisclosure, a unique number will be assigned to your file.

See Privacy Act Information above. Detach this part before submitting form.

Instructions for completing this form (FAA 8710-1) are on the reverse. If an electronic form is not printed on a duplex printer, the applicant's name, date of birth, and certificate number (if applicable) must be furnished on the reverse side of the application. This information is required for identification purposes. The telephone number and E-mail address are optional.

Tear off this cover sheet before submitting this form.
AIRMAN CERTIFICATE AND/OR RATING APPLICATION
INSTRUCTIONS FOR COMPLETING FAA FORM 8710-1

I. APPLICATION INFORMATION. Check appropriate blocks(s).
 Block A. Name. Enter legal name. Use no more than one middle name for
 record purposes. Do not change the name on subsequent applications unless it
 is done in accordance with 14 CFR Section 61.25. If you do not have a
 middle name, enter “NMN”. If you have a middle initial only, indicate
 “Initial only.” If you are a Jr., or a II, or III, so indicate. If you have an FAA
 certificate, the name on the application should be the same as the name on the
 certificate unless you have had it changed in accordance with 14 CFR Section
 61.25.

 Block B. Social Security Number. Optional: See supplemental
 Information Privacy Act. Do not leave blank: Use only US Social Security
 Number. Enter either “SSN” or the words “Do Not Use” or “None.” SSN’s
 are not shown on certificates.

 Block C. Date of Birth. Check for accuracy. Enter eight digits; Use
 numeric characters, i.e., 07-09-1925 instead of July 9, 1925. Check to see that
 DOB is the same as it is on the medical certificate.

 Block D. Place of Birth. If you were born in the USA, enter the city and
 state where you were born. If the city is unknown, enter the county and state.
 If you were born outside the USA, enter the name of the city and country
 where you were born.

 Block E. Permanent Mailing Address. Enter residence number and
 street, P.O. Box or rural route number in the top part of the block above the
 line. The City, State, and ZIP code go in the bottom part of the block below the
 line. Check for accuracy. Make sure the numbers are not transposed.
 FAA policy requires that you use your permanent mailing address.
 Justification must be provided on a separate sheet of paper signed and
 submitted with the application when a PO Box or rural route number is
 used in place of your permanent physical address. A map or directions
 must be provided if a physical address is unavailable.

 Block F. Citizenship. Check USA if applicable. If not, enter the country
 where you are a citizen.

 Block G. Do you read, speak, write and understand the English
 language? Check yes or no.

 Block H. Height. Enter your height in inches. Example: 5’8” would be
 entered as 68 in. No fractions, use whole inches only.

 Block I. Weight. Enter your weight in pounds. No fractions, use whole
 pounds only.

 Block J. Hair. Spell out the color of your hair. If bald, enter “Bald.”
 Color should be listed as black, red, brown, blond, or gray. If you wear a wig
 or toupee, enter the color of your hair under the wig or toupee.

 Block K. Eyes. Spell out the color of your eyes. The color should be listed
 as blue, brown, black, hazel, green, or gray.

 Block L. Sex. Check male or female.

 Block M. Do You Now Hold or Have You Ever Held An FAA
 Pilot Certificate? Check yes or no. (NOTE: A student pilot certificate is a
 “Pilot Certificate.”)

 Block N. Grade of Pilot Certificate. Enter the grade of pilot certificate
 (i.e., Student, Recreational, Private, Commercial, or ATP). Do NOT enter
 flight instructor certificate information.

 Block O. Certificate Number. Enter the number as it appears on your
 pilot certificate.

 Block P. Date Issued. Enter the date your pilot certificate was issued.

 Block Q. Do You Now Hold A Medical Certificate? Check yes or
 no. If yes, complete Blocks R, S, and T.

 Block R. Class of Certificate. Enter the class as shown on the medical
 certificate, i.e., 1st, 2nd, or 3rd class.

 Block S. Date Issued. Enter the date your medical certificate was issued.

 Block T. Name of Examiner. Enter the name as shown on medical
 certificate.

 Block U. Narcotics, Drugs. Check appropriate block. Only check “Yes”
 if you have actually been convicted. If you have been charged with a
 violation which has not been adjudicated, check “No”.

 Block V. Date of Final Conviction. If block “U” was checked “Yes”
 give the date of final conviction.

II. CERTIFICATE OR RATING APPLIED FOR ON BASIS OF:
 Block A. Completion of Required Test.
 1. AIRCRAFT TO BE USED. (If flight test required) – Enter the make and model
 of each aircraft used. If simulator or FTD, indicate.
 2. TOTAL TIME IN THIS AIRCRAFT (Hrs.) – (a) Enter the total Flight
 Time in each make and model. (b) Pilot-In-Command Flight Time - In
 each make and model.

 Block B. Military Competence Obtained In. Enter your branch of
 service, date rated as a military pilot, your rank, or grade and service number.
 In block 4a or 4b, enter the make and model of each military aircraft used to
 qualify (as appropriate).

 Block C. Graduate of Approved Course.
 1. COUNTRY. Country which issued the license.
 2. GRADE OF LICENSE. Grade of license issued, i.e., private, commercial,
 etc.
 3. NUMBER. Number which appears on the license.
 4. RATINGS. All ratings that appear on the license.

 Block D. Holder of Foreign License Issued By.
 1. COUNTRY. Country which issued the license.
 2. AGENCY SCHOOL/CENTER CERTIFICATION NUMBER. As shown
 on the graduation certificate. Be sure the location is entered.
 3. CURRICULUM FROM WHICH GRADUATED. As shown on the
 graduation certificate.
 4. DATE. Date of graduation from indicated course. Approved course
 graduate must also complete Block “A” COMPLETION OF REQUIRED
 TEST.

 Block E. Completion of Air Carrier’s Approved Training
 Program.
 1. Name of Air Carrier.
 2. Date program was completed.
 3. Identify the Training Curriculum.

III. RECORD OF PILOT TIME. The minimum pilot experience required
 by the appropriate regulation must be entered. It is recommended, however,
 that ALL pilot time be entered. If decimal points are used, be sure they are
 legible. Night flying must be entered when required. You should fill in the
 blocks that apply and ignore the blocks that do not. Second In Command
 “SIC” time used may be entered in the appropriate blocks. Flight Simulator,
 Flight Training Device and PCATD time may be entered in the boxes
 provided. Total, Instruction received, and Instrument Time should be entered
 in the top, middle, or bottom of the boxes provided as appropriate.

IV. HAVE YOU FAILED A TEST FOR THIS CERTIFICATE OR
 RATING? Check appropriate block.

V. APPLICANT’S CERTIFICATION.
 A. SIGNATURE. The way you normally sign your name.
 B. DATE. The date you sign the application.
Airman Certificate and/or Rating Application

Application Information
- Student
- Recreational
- Private
- Commercial
- Airline Transport
- Instrument
- Airplane Single-Engine
- Airplane Multiengine
- Rotorcraft
- Balloon
- Airship
- Glider
- Powered-Lift
- Flight Instructor
- Initial
- Renewal
- Reinstatement
- Additional Instructor Rating
- Ground Instructor
- Other

A. Name (Last, First, Middle)

B. SSN (US Only)

C. Date of Birth
- Month
- Day
- Year

D. Place of Birth

E. Address

F. Citizenship
- USA
- Other

G. Do you read, speak, write, & understand the English language?
- Yes
- No

H. Height
I. Weight
J. Hair
K. Eyes
L. Sex
- Male
- Female

M. Do you now hold, or have you ever held an FAA Pilot Certificate?
- Yes
- No

N. Grade Pilot Certificate

O. Certificate Number

P. Date Issued

Q. Do you hold a Medical Certificate?
- Yes
- No

U. Have you ever been convicted for violation of any Federal or State statutes relating to narcotic drugs, marijuana, or depressant or stimulant drugs or substances?
- Yes
- No

II. Certificate or Rating Applied For on Basis of:

A. Completion of Required Test
1. Aircraft to be used (if flight test required)
2a. Total time in this aircraft / SIM / FTD
2b. Pilot in command
3. Rank or Grade and Service Number
4a. Flown 10 hours PIC in last 12 months in the following Military Aircraft.
4b. US Military PIC & Instrument check in last 12 months (List Aircraft)

B. Military Competence Obtained In
1. Service
2. Date Rated
3. Name of Examiner

C. Graduate of Approved Course
1. Name and Location of Training Agency or Training Center
2. Curriculum From Which Graduated
3. Date

D. Holder of Foreign License Issued By
1. Country
2. Grade of License
3. Number
4. Ratings

E. Completion of Air Carrier’s Approved Training Program
1. Name of Carrier
2. Date
3. Whose Curriculum

III RECORD OF PILOT TIME (Do not write in the shaded areas.)

<table>
<thead>
<tr>
<th>Total Instruction</th>
<th>InstructionReceived</th>
<th>Solo</th>
<th>Pilot in Command (PIC)</th>
<th>Cross Country Instruction Received</th>
<th>Cross Country Solo</th>
<th>Cross Country PIC</th>
<th>Instrument</th>
<th>Night Instruction Received</th>
<th>Night Take-off Landings</th>
<th>Night PIC</th>
<th>Night Take-Off Landing PIC</th>
<th>Number of Flights</th>
<th>Number of Aero-Tows</th>
<th>Number of Ground Launches</th>
<th>Number ofPowered Launches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airplanes</td>
<td></td>
</tr>
<tr>
<td>Rotorcraft</td>
<td></td>
</tr>
<tr>
<td>Powered Lift</td>
<td></td>
</tr>
<tr>
<td>Gliders</td>
<td></td>
</tr>
<tr>
<td>Lighter Than Air</td>
<td></td>
</tr>
<tr>
<td>Simulator</td>
<td></td>
</tr>
<tr>
<td>Training Device</td>
<td></td>
</tr>
<tr>
<td>PCATD</td>
<td></td>
</tr>
</tbody>
</table>

IV. Have you failed a test for this certificate or rating?
- Yes
- No

V. Applicants’s Certification — I certify that all statements and answers provided by me on this application form are complete and true to the best of my knowledge and I agree that they are to be considered as part of the basis for issuance of any FAA certificate to me. I have also read and understand the Privacy Act statement that accompanies this form.

Signature of Applicant: ____________________________
Date: ____________________________

FAA Form 8710-1 (4-00) Supersedes Previous Edition

NSN: 0052-00-682-5007
Instructor's Recommendation

I have personally instructed the applicant and consider this person ready to take the test.

<table>
<thead>
<tr>
<th>Date</th>
<th>Instructor's Signature (Print Name & Sign)</th>
<th>Certificate No.</th>
<th>Certificate Expires</th>
</tr>
</thead>
</table>

Air Agency's Recommendation

The applicant has successfully completed our ___________________________ course, and is recommended for certification or rating without further ___________________________ test.

<table>
<thead>
<tr>
<th>Date</th>
<th>Agency Name and Number</th>
<th>Officials Signature</th>
</tr>
</thead>
</table>

Designated Examiner or Airman Certification Representative Report

☑ Student Pilot Certificate Issued (Copy attached)

☐ I have personally reviewed this applicant’s pilot logbook and/or training record, and certify that the individual meets the pertinent requirements of 14 CFR Part 61 for the certificate or rating sought.

☐ I have personally reviewed this applicant's graduation certificate, and found it to be appropriate and in order, and have returned the certificate.

☐ I have personally tested and/or verified this applicant in accordance with pertinent procedures and standards with the result indicated below.

☐ Approved – Temporary Certificate Issued (Original Attached)

☐ Disapproved – Disapproval Notice Issued (Original Attached)

<table>
<thead>
<tr>
<th>Location of Test (Facility, City, State)</th>
<th>Duration of Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ground</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Certificate or Rating for Which Tested</th>
<th>Type(s) of Aircraft Used</th>
<th>Registration No(s)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Examiner’s Signature (Print Name & Sign)</th>
<th>Certificate No.</th>
<th>Designation No.</th>
<th>Designation Expires</th>
</tr>
</thead>
</table>

Evaluator’s Record (Use For ATP Certificate and/or Type Ratings)

<table>
<thead>
<tr>
<th>Inspector</th>
<th>Examiner</th>
<th>Signature and Certificate Number</th>
<th>Date</th>
</tr>
</thead>
</table>

☐ Oral

☐ Approved Simulator/Training Device Check

☐ Aircraft Flight Check

☐ Advanced Qualification Program

Aviation Safety Inspector or Technician Report

I have personally tested this applicant in accordance with or have otherwise verified that this applicant complies with pertinent procedures, standards, policies, and or necessary requirements with the result indicated below.

☐ Approved – Temporary Certificate Issued (Original Attached)

☐ Disapproved – Disapproval Notice Issued (Original Attached)

<table>
<thead>
<tr>
<th>Location of Test (Facility, City, State)</th>
<th>Duration of Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ground</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Certificate or Rating for Which Tested</th>
<th>Type(s) of Aircraft Used</th>
<th>Registration No(s)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>Inspector’s Signature (Print Name & Sign)</th>
<th>Certificate No.</th>
<th>FAA District Office</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Attachments:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Student Pilot Certificate (Copy)</td>
<td>Airman’s Identification (ID)</td>
</tr>
<tr>
<td>☐ Knowledge Test Report</td>
<td>ID: __________________________</td>
</tr>
<tr>
<td>☐ Temporary Airman Certificate</td>
<td>Name: ________________________</td>
</tr>
<tr>
<td>☐ Notice of Disapproval</td>
<td>Number: ______________________</td>
</tr>
</tbody>
</table>
|☐ Superseded Airman Certificate | Date of Birth: ___________________

<table>
<thead>
<tr>
<th>Form of ID</th>
<th>Certificate Number: ______________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Birth: ___________________</td>
<td>E-Mail Address: ____________________</td>
</tr>
</tbody>
</table>

| FAA Form 8710-1 (4-00) Supersedes Previous Edition | NSN: 0052-00-682-5007 |

Student Pilot Certificate Issued Certificate or Rating Based on
Examiner’s Recommendation Flight Instructor Ground Instructor
Accepted Military Competence
Rejected Foreign License
Reissue or Exchange of Pilot Certificate Approved Course Graduate
Special Medical test conducted — report forwarded to Aeromedical Certification Branch, AAM-330
Other Approved FAA Qualification Criteria
Instructor Renewal Based on
Activity Instructor Renewal Based on
Test Training Course
Duties and Responsibilities

Training Course (FIRC) Name	Graduation Certificate No.	Date

<table>
<thead>
<tr>
<th>Date</th>
<th>Inspector’s Signature (Print Name & Sign)</th>
<th>Certificate No.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Attachments:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ Student Pilot Certificate (Copy)</td>
<td>Airman’s Identification (ID)</td>
</tr>
<tr>
<td>☐ Knowledge Test Report</td>
<td>ID: __________________________</td>
</tr>
<tr>
<td>☐ Temporary Airman Certificate</td>
<td>Name: ________________________</td>
</tr>
<tr>
<td>☐ Notice of Disapproval</td>
<td>Number: ______________________</td>
</tr>
</tbody>
</table>
|☐ Superseded Airman Certificate | Date of Birth: ___________________

<table>
<thead>
<tr>
<th>Form of ID</th>
<th>Certificate Number: ______________________</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Birth: ___________________</td>
<td>E-Mail Address: ____________________</td>
</tr>
</tbody>
</table>
Stage 1 Exam
Introduction to the Commercial Certificate

Circle the most correct answer choice.

1. When the angle-of-attack of a symmetrical airfoil is increased, the center of pressure will
 A — move aft (rearward).
 B — move forward.
 C — not move.

2. A symmetrical airfoil moving through the air at zero degrees angle-of-attack
 A — will generate a low static pressure above the wing and a high static pressure beneath the wing.
 B — will produce a high pressure above the wing and a low pressure beneath the wing.
 C — will cause similar acceleration of the airflow over both upper and lower surfaces, similar velocities of flow generating similar pressures and therefore no lift.

3. The lift generated by an airfoil is
 A — proportional to the square of the velocity of the relative airflow.
 B — inversely proportional to the air density.
 C — inversely proportional to the wing surface area.

4. If the airplane attitude remains in a new position after the control column is pressed forward and released, the airplane is said to display
 A — negative longitudinal static stability.
 B — positive longitudinal static stability.
 C — neutral longitudinal static stability.

5. If the airplane attitude oscillates about its original position before gradually settling down after the control column is pressed forward and released, the airplane is said to display
 A — positive dynamic stability.
 B — neutral static stability.
 C — negative dynamic stability.

6. Longitudinal dynamic instability in an airplane can be identified by
 A — bank oscillations becoming progressively steeper.
 B — pitch oscillations becoming progressively steeper.
 C — the need to apply continuous forward pressure on the control column.

7. If a tire has moved so that the creep marks are out of alignment, then
 A — the tire is serviceable.
 B — the tire should be inspected and possibly reinstalled or replaced.
 C — tire pressure should be checked.

8. Most light airplane braking systems are operated
 A — by cables.
 B — pneumatically.
 C — hydraulically.

9. How many hours are required for completion of the Commercial Certificate, following a Part 141 program?
 A — 190 hours of flight training, 100 hours of ground training.
 B — 250 hours of flight training, 35 hours of ground training.
 C — 120 hours of flight training, 35 hours of ground training.

10. What is density altitude?
 A — The altitude above the standard datum plane.
 B — The pressure altitude corrected for non-standard temperature.
 C — The altitude read directly from the altimeter.

11. If a pilot changes the altimeter setting from 30.11 to 29.96, what is the approximate change in indication?
 A — The altimeter will indicate 15 in. Hg higher.
 B — The altimeter will indicate 150 feet higher.
 C — The altimeter will indicate 150 feet lower.
12. In the Northern Hemisphere, a magnetic compass will normally indicate a turn toward the north if
 A — a right turn is entered from an east heading.
 B — a left turn is entered from a west heading.
 C — the aircraft is accelerated while on an east or west heading.

13. Minimum thrust for steady cruise flight occurs at
 A — maximum cruise speed.
 B — minimum cruise speed.
 C — the speed for minimum total drag.

14. (Refer to Exam Figure 1, below.) At the airspeed represented by point “B,” in steady flight the pilot can expect to obtain the airplane’s maximum
 A — endurance.
 B — glide range and cruise range.
 C — coefficient of lift.

15. While maintaining a constant bank angle and altitude in a coordinated turn, an increase in airspeed will
 A — decrease the rate of turn resulting in a decreased load factor.
 B — decrease the rate of turn resulting in no change in load factor.
 C — increase the rate of turn resulting in no change in load factor.

16. During a night flight, you observe a steady white light and a flashing red light ahead and at the same altitude. What is the general direction of movement of the other aircraft?
 A — The other aircraft is crossing to the left.
 B — The other aircraft is crossing to the right.
 C — The other aircraft is flying away from you.

17. To best overcome the effects of spatial disorientation, a pilot should
 A — rely on body sensations.
 B — increase the breathing rate.
 C — rely on aircraft instrument indications.

18. In a nonpressurized airplane, at high altitudes, the amount of oxygen that diffuses across the lung membranes and into the blood is
 A — decreased because of the low partial pressure of oxygen.
 B — decreased because of the lower temperatures.
 C — unchanged to that at sea level.

19. If a pilot does not meet the recency of experience requirements for night flight and official sunset is 1800 CST, the latest time passengers should be carried is
 A — 1759 CST.
 B — 1829 CST.
 C — 1859 CST.

20. For 14 CFR Part 135 Operations, the airplane flight manual specifies a maximum altitude loss of 75 feet for malfunction of the autopilot under cruise conditions. What is the lowest altitude above the terrain the autopilot may be used during enroute operations?
 A — 500 feet.
 B — 1,000 feet.
 C — 1,500 feet.

21. Which is required equipment for powered aircraft during VFR night flights?
 A — Anticollision light system.
 B — Gyroscopic direction indicator.
 C — Gyroscopic bank-and-pitch indicator.
22. In theory, if the angle of attack and other factors remain constant and the airspeed is doubled, the lift produced at the higher speed will be
 A — the same as the lower speed.
 B — two times greater than at the lower speed.
 C — four times greater than at the lower speed.

23. (Refer to Exam Figure 2, Page 1–4) How much altitude will this airplane lose in 3 miles of gliding at an angle of attack of 8°?
 A — 440 feet.
 B — 880 feet.
 C — 1,320 feet.

24. Stall speed is affected by
 A — weight, load factor, and power.
 B — load factor, angle of attack, and power.
 C — angle of attack, weight, and air density.

25. If the same angle of attack is maintained in ground effect as when out of ground effect, lift will
 A — increase, and induced drag will decrease.
 B — decrease, and parasite drag will increase.
 C — increase, and induced drag will increase.

26. Which procedure should you follow to avoid wake turbulence if a large jet crosses your course from left to right approximately 1 mile ahead and at your altitude?
 A — Make sure you are slightly above the path of the jet.
 B — Slow your airspeed to V_A and maintain altitude and course.
 C — Make sure you are slightly below the path of the jet and perpendicular to the course.

27. What is the operational difference between the turn coordinator and the turn-and-slip indicator? The turn coordinator
 A — is always electric; the turn-and-slip indicator is always vacuum-driven.
 B — indicates bank angle only; the turn-and-slip indicator indicates rate of turn and coordination.
 C — indicates roll rate, rate of turn, and coordination; the turn-and-slip indicator indicates rate of turn and coordination.

28. A pilot is entering an area where significant clear air turbulence has been reported. Which action is appropriate upon encountering the first ripple?
 A — Maintain altitude and airspeed.
 B — Adjust airspeed to that recommended for rough air.
 C — Enter a shallow climb or descent at maneuvering speed.

29. What flight time must be shown, in a reliable record, by a pilot exercising the privileges of a commercial certificate?
 A — Flight time showing aeronautical training and experience to meet requirements for a certificate or rating.
 B — All flight time flown for compensation or hire.
 C — Only flight time for compensation or hire with passengers aboard which is necessary to meet the recent flight experience requirements.

30. 14 CFR Part 135 applies to which operation?
 A — Nonstop sightseeing flights that begin and end at the same airport, and are conducted within a 25 SM radius of that airport.
 B — Aerial operations for compensation, such as aerial photography, pipeline patrol, rescue, and crop dusting.
 C — Commercial operations (not an air carrier) in an aircraft with less than 20 passenger seats and a maximum payload capacity of less than 6,000 pounds.
Exam Figure 2
Circle the most correct answer choice.

1. What is the minimum radio equipment required for operation within Class C airspace?
 A — Two-way radio communication equipment and a 4096 transponder.
 B — Two-way radio communications equipment and a 4096-code transponder and a DME.
 C — Two-way radio communications equipment and a 4096-code transponder with an encoding altimeter (Mode C).

2. Pilots flying over a national wildlife refuge are requested to fly no lower than
 A — 1,000 feet AGL.
 B — 2,000 feet AGL.
 C — 3,000 feet AGL.

3. If fuel consumption is 80 pounds per hour and groundspeed is 180 knots, how much fuel is required for an airplane to travel 460 NM?
 A — 205 pounds.
 B — 212 pounds.
 C — 460 pounds.

4. An airplane departs an airport under the following conditions:
 Airport elevation .. 1,000 ft
 Cruise altitude ... 9,500 ft
 Rate of climb ... 500 fpm
 Average true airspeed 135 kt
 True course ... 215°
 Average wind velocity 290°T/20
 Variation .. 3°W
 Deviation .. -2°
 Average fuel consumption 13 gal/hr
 Determine the approximate time, compass heading, distance, and fuel consumed during the climb.
 A — 14 minutes, 234°, 26 NM, 3.9 gallons.
 B — 17 minutes, 224°, 36 NM, 3.7 gallons.
 C — 17 minutes, 242°, 31 NM, 3.5 gallons.

5. (Refer to Exam Figure 3, Page 2–4.) Given:
 Empty weight (oil is included) 1,271 lb
 Empty weight moment (in-lb/1,000) 102.04
 Pilot and copilot .. 360 lb
 Cargo ... 340 lb
 Fuel .. 37 gal
 Will the CG remain within limits after 30 gallons of fuel have been used in flight?
 A — Yes, the CG will remain within limits.
 B — No, the CG will be located aft of the CG limit.
 C — Yes, but the CG will be located in the shaded area of the CG envelope.

6. (Refer to Exam Figure 4, Page 2–5.) Which illustration indicates that the airplane should be turned 150° left to intercept the 360 radial at a 60° angle inbound?
 A — A.
 B — B.
 C — C.

7. (Refer to Exam Figure 5, Page 2–6.) If an aircraft has the indications shown in instrument group 3, then makes a 180° turn to the left and continues straight ahead, it will intercept which radial?
 A — 135 radial.
 B — 270 radial.
 C — 360 radial.

8. Calculate distance to the station given:
 Wing tip bearing change 5°
 Time elapsed between bearing change 5 min
 True airspeed .. 115 knots
 A — 230 NM (45 min).
 B — 115 NM (60 min).
 C — 85 NM (45 min).

9. While cruising at 135 knots and on a constant heading, the ADF needle decreases from a relative bearing of 315° to 270° in 7 minutes. The approximate time and distance to the station being used is
 A — 7 minutes and 16 miles.
 B — 14 minutes and 28 miles.
 C — 19 minutes and 38 miles.
10. (Refer to Exam Figure 6, Page 2–7.) Determine the magnetic bearing TO the station as indicated by the ADF dial.
A — 330°.
B — 180°.
C — 210°.

11. What is a suitable cruise altitude at or above your safety altitude of 4,300 feet MSL if the cloud bases are at 7,000 feet MSL and your planned magnetic course is 250°?
A — 5,500 feet MSL.
B — 4,500 feet MSL.
C — 6,500 feet MSL.

12. (Refer to Exam Figure 7, Page 2–7.) If more than one cruising altitude is intended, which should be entered in block 7 of the flight plan?
A — Initial cruising altitude.
B — Highest cruising altitude.
C — Lowest cruising altitude.

13. You are 2 NM left of course after traveling 15 NM. What is the tracking error?
A — 8° left.
B — 8° right.
C — 12° left.

14. What is indicated if ice pellets are encountered at 8,000 feet?
A — Freezing rain at higher altitude.
B — You are approaching an area of thunderstorms.
C — You will encounter hail if you continue your flight.

15. Which conditions are favorable for the formation of a surface-based temperature inversion?
A — Clear, cool nights with calm or light wind.
B — Area of unstable air rapidly transferring heat from the surface.
C — Broad areas of cumulus clouds with smooth, level bases at the same altitude.

16. In what ways do advection fog, radiation fog, and steam fog differ in their formation or location?
A — Radiation fog is restricted to land areas; advection fog is most common along coastal areas; steam fog forms over a water surface.
B — Advection fog deepens as wind speed increases up to 20 knots; steam fog requires calm or very light wind; radiation fog forms when the ground or water cools the air by radiation.
C — Steam fog forms from moist air moving over a colder surface; advection fog requires cold air over a warmer surface; radiation fog is produced by radiation cooling of the ground.

17. Which in-flight hazard is most commonly associated with warm fronts?
A — Advection fog.
B — Radiation fog.
C — Precipitation-induced fog.

18. Given:
Wind .. 175° at 20 kts
Distance .. 135 NM
True course ... 075°
True airspeed 80 kts
Fuel consumption 105 lb/hr
Determine the time en route and fuel consumption.
A — 1 hour 28 minutes and 73.2 pounds.
B — 1 hour 38 minutes and 158 pounds.
C — 1 hour 40 minutes and 175 pounds.

19. Given:
Pressure altitude 12,000 ft
True air temperature +50°F
From the conditions given, the approximate density altitude is
A — 11,900 feet.
B — 14,130 feet.
C — 18,150 feet.

20. Given:
True course ... 345°
True heading 355°
True airspeed 85 kts
Groundspeed 95 kts
Determine the wind direction and speed.
A — 095° and 19 knots.
B — 113° and 19 knots.
C — 238° and 18 knots.
21. Given:
Distance off course .. 9 mi
Distance flown .. 95 mi
Distance to fly ... 125 mi
To converge at the destination, the total correction angle would be
A — 4°.
B — 6°.
C — 10°.

22. To track inbound on the 215 radial of a VOR station, the recommended procedure is to set the OBS to
A — 215° and make heading corrections toward the CDI needle.
B — 215° and make heading corrections away from the CDI needle.
C — 035° and make heading corrections toward the CDI needle.

23. Inbound on the 040 radial, a pilot selects the 055 radial, turns 15° to the left, and notes the time. While maintaining a constant heading, the pilot notes the time for the CDI to center is 15 minutes. Based on this information, the ETE to the station is
A — 8 minutes.
B — 15 minutes.
C — 30 minutes.

24. An aircraft is maintaining a magnetic heading of 265° and the ADF shows a relative bearing of 065°. This indicates that the aircraft is crossing the
A — 065° magnetic bearing FROM the radio beacon.
B — 150° magnetic bearing FROM the radio beacon.
C — 330° magnetic bearing FROM the radio beacon.

25. The relative bearing on an ADF changes from 265° to 260° in 2 minutes elapsed time. If the ground-speed is 145 knots, the distance to that station would be
A — 26 NM.
B — 37 NM.
C — 58 NM.

26. While maintaining a constant heading, a relative bearing of 10° doubles in 5 minutes. If the true airspeed is 105 knots, the time and distance to the station being used is approximately
A — 5 minutes and 8.7 miles.
B — 10 minutes and 17 miles.
C — 15 minutes and 31.2 miles.

27. What designated airspace associated with an airport become inactive when the control tower at that airport is not in operation?
A — Class D, which then becomes Class C.
B — Class D, which then become Class E.
C — Class B.

28. Which is true relating to the blue and magenta colors used to depict airports on Sectional Aeronautical Charts?
A — Class E airports are shown in blue; Class C and D are magenta.
B — Class B airports are shown in blue; Class D and E are magenta.
C — Class E airports are shown in magenta; Class B, C, and D are blue.

29. What is the minimum flight visibility and proximity to cloud requirements for VFR flight, at 6,500 feet MSL, in Class C, D, and E airspace?
A — 1 mile visibility; clear of clouds.
B — 3 miles visibility; 1,000 feet above and 500 feet below.
C — 5 miles visibility; 1,000 feet above and 1,000 feet below.

30. To operate an airplane under Special VFR (SVFR) within Class D airspace at night, which is required?
A — The pilot must hold an instrument pilot rating, but the airplane need not be equipped for instrument flight, as long as the weather will remain at or above SVFR minimums.
B — The Class D airspace must be specifically designated as a night SVFR area.
C — The pilot must hold an instrument pilot rating and the airplane must be equipped for instrument flight.
Exam Figure 3. Loading graph and center-of-gravity envelope
Exam Figure 4
Exam Figure 5. Radio Magnetic Indicator (RMI)
CIVIL AIRCRAFT PILOTS. FAR Part 91 requires you file an IFR flight plan to operate under instrument flight rules in controlled airspace. Failure to file could result in a civil penalty not to exceed $1,000 for each violation (Section 901 of the Federal Aviation Act of 1958, as amended). Filling of a VFR flight plan is recommended as a good operating practice. See also Part 99 for requirements concerning DVFR flight plans.

Exam Figure 7. Flight plan form
Circle the most correct answer choice.

1. The spark plugs in a piston engine are provided with a high energy (or high tension) electrical supply from
A — the battery at all times.
B — the magnetos.
C — the battery at start-up, and then the magnetos.

2. While cruising at 9,500 feet MSL, the fuel/air mixture is properly adjusted. What will occur if a descent to 4,500 feet MSL is made without readjusting the mixture?
A — The fuel/air mixture may become excessively lean.
B — There will be more fuel in the cylinders than is needed for normal combustion, and the excess fuel will absorb heat and cool the engine.
C — The excessively rich mixture will create higher cylinder head temperatures and may cause detonation.

3. Which condition is most favorable to the development of carburetor icing?
A — Any temperature below freezing and a relative humidity of less than 50 percent.
B — Between 32°F and 50°F and low humidity.
C — Between 20°F and 70°F and high humidity.

4. In an airplane with a constant-speed propeller, which of the following procedures should be used?
A — When power is decreased, reduce rpm before manifold pressure.
B — When power is increased, increase rpm before manifold pressure.
C — When power is increased or decreased, adjust manifold pressure before rpm.

5. When operating a constant-speed propeller
A — avoid high rpm setting with high manifold pressures.
B — avoid low rpm setting with high manifold pressures.
C — always use a rich mixture with high rpm settings.

6. If the oil temperature gauge and the cylinder head temperature gauge are both reading higher than the normal operating range, a possible cause is
A — an over-rich mixture and too much power.
B — a too-lean mixture and too much power.
C — fuel with a higher-than-specified fuel rating.

7. What type of fuel can be substituted in an aircraft if the recommended octane is not available?
A — The next higher octane aviation gas.
B — The next lower octane aviation gas.
C — Unleaded automotive gas of the same octane rating.

8. If you allow a fuel tank to run dry in flight before changing tanks, you run the risk of
A — air being drawn into the fuel lines and causing a vapor lock.
B — overheating the fuel pump, leading to failure.
C — pumping foreign matter into the fuel lines.

9. The battery master switch should be turned to OFF after the engine is stopped to avoid the battery discharging through
A — the magnetos.
B — the alternator or generator.
C — the electrical services connected to it.

10. If the operational category of an airplane is listed as “utility” it would mean that this airplane could be operated in which of the following maneuvers?
A — All types of acrobatics.
B — Limited acrobatics, including spins (if approved).
C — Any maneuver except acrobatics or spins.

11. Which V-speed represents maximum landing gear extended speed?
A — V_{LE}
B — V_{LO}
C — V_{FE}
12. Which combination of atmospheric conditions will reduce airplane takeoff and climb performance?
 A — Low temperature, low relative humidity, and low density altitude.
 B — High temperature, low relative humidity, and low density altitude.
 C — High temperature, high relative humidity, and high density altitude.

13. Which procedure should you follow to avoid wake turbulence if a large jet crosses your course from left to right approximately 1 mile ahead and at your altitude?
 A — Make sure you are slightly above the path of the jet.
 B — Slow your airspeed to V_{A} and maintain altitude and course.
 C — Make sure you are slightly below the path of the jet and perpendicular to the course.

14. What is ground effect?
 A — The result of the interference of the surface of the earth with the airflow patterns about an airplane.
 B — The result of an alteration in airflow patterns increasing induced drag about the wings of an airplane.
 C — The result of the disruption of the airflow patterns about the wings of an airplane to the point where the wings will no longer support the airplane in flight.

15. (Refer to Exam Figure 8, Page 3–4.) Given:
 Temperature .. 30°F
 Pressure altitude 6,000 feet
 Weight .. 3,300 pounds
 Headwind ... 20 knots

 What is the total takeoff distance over a 50-foot obstacle?
 A — 1,100 feet.
 B — 1,300 feet.
 C — 1,500 feet.

16. Which maximum range factor decreases as weight decreases?
 A — Maximum range altitude.
 B — Maximum range airspeed.
 C — Maximum range angle-of-attack.

17. (Refer to Exam Figure 9, Page 3–5.) What flight time is available, allowing for VFR day fuel reserve, under the following conditions if the mixture is leaned correctly?
 Pressure altitude 18,000 ft
 Temperature ... -21°C
 Power .. 2,400 rpm, 28” MP
 Usable fuel ... 425 lb

 A — 5 hours 28 minutes.
 B — 4 hours 01 minutes.
 C — 3 hours 14 minutes.

18. A military air station can be identified by a rotating beacon that emits
 A — white and green alternating flashes.
 B — two, quick, white flashes between green flashes.
 C — green, yellow, and white flashes.

19. A flashing white light signal from the control tower to a taxiing aircraft is an indication to
 A — taxi at a faster speed.
 B — taxi only on taxiways and not cross runways.
 C — return to the starting point on the airport.

20. After landing at a tower-controlled airport, when should the pilot contact ground control?
 A — When advised to do so by the tower.
 B — Prior to turning off the runway.
 C — After reaching a taxiway that leads directly to the parking area.

21. Leaving the carburetor heat on while taking off
 A — leans the mixture for more power on takeoff.
 B — will decrease the takeoff distance.
 C — will increase the ground roll.

22. For internal cooling, reciprocating aircraft engines are especially dependent on
 A — a properly functioning cowl flap augmenter.
 B — the circulation of lubricating oil.
 C — the proper freon/compressor output ratio.

23. To develop maximum power and thrust, a constant-speed propeller should be set to a blade angle that will produce a
 A — large angle of attack and low RPM.
 B — small angle of attack and high RPM.
 C — large angle of attack and high RPM.
24. During preflight in cold weather, crankcase breather lines should receive special attention because they are susceptible to being clogged by:
A — congealed oil from the crankcase.
B — moisture from the outside air which has frozen.
C — ice from crankcase vapors that have condensed and subsequently frozen.

25. Propeller efficiency is the
A — ratio of thrust horsepower to brake horsepower.
B — actual distance a propeller advances in one revolution.
C — ratio of geometric pitch to effective pitch.

26. Baggage weighing 90 pounds is placed in a normal category airplane’s baggage compartment which is placarded at 100 pounds. If this airplane is subjected to a positive load factor of 3.5 Gs, the total load of the baggage would be:
A — 315 pounds and would be excessive.
B — 315 pounds and would not be excessive.
C — 350 pounds and would not be excessive.

27. Given:
Total weight ... 4,137 lb
CG location .. Station 67.8
Fuel consumption 13.7 GPH
Fuel CG .. Station 68.0
After 1 hour 30 minutes of flight time, the CG would be located at station
A — 67.79.
B — 68.79.
C — 70.78.

28. (Refer to Exam Figure 10, Page 3–6.) Rwy 30 is being used for landing. Which surface wind would exceed the airplane’s crosswind capability of 0.2 VSO, if VSO is 60 knots?
A — 260° at 20 knots.
B — 275° at 25 knots.
C — 315° at 35 knots.

29. Which type of approach and landing is recommended during gusty wind conditions?
A — A power-on approach and power-on landing.
B — A power-off approach and power-on landing.
C — A power-on approach and power-off landing.

30. (Refer to Exam Figure 11, Page 3–7.) Using a maximum rate of climb, how much fuel would be used from engine start to 6,000 feet pressure altitude?
Aircraft weight .. 3,200 lb
Airport pressure altitude 2,000 ft
Temperature .. 27°C
A — 10 pounds.
B — 14 pounds.
C — 24 pounds.
Exam Figure 8. Obstacle takeoff chart
PRESSURE ALTITUDE 18,000 FEET

CONDITIONS:
- 4000 Pounds
- Recommended Lean Mixture
- Cowl Flaps Closed

NOTE
For best fuel economy at 70% power or less, operate at 6 PPH leaner than shown in this chart or at peak EGT.

<table>
<thead>
<tr>
<th>RPM</th>
<th>MP</th>
<th>% BHP</th>
<th>20 °C BELOW STANDARD TEMP -41 °C</th>
<th>STANDARD TEMPERATURE -21 °C</th>
<th>20 °C ABOVE STANDARD TEMP -1 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>KTAS</td>
<td>PPH</td>
<td>% BHP</td>
</tr>
<tr>
<td>2500</td>
<td>30</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>80</td>
<td>184</td>
<td>105</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>75</td>
<td>178</td>
<td>99</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>70</td>
<td>171</td>
<td>91</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>63</td>
<td>162</td>
<td>84</td>
<td>60</td>
</tr>
<tr>
<td>2400</td>
<td>30</td>
<td>81</td>
<td>185</td>
<td>107</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>76</td>
<td>179</td>
<td>100</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>71</td>
<td>172</td>
<td>93</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>66</td>
<td>165</td>
<td>87</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>61</td>
<td>158</td>
<td>80</td>
<td>57</td>
</tr>
<tr>
<td>2300</td>
<td>30</td>
<td>79</td>
<td>182</td>
<td>103</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>74</td>
<td>176</td>
<td>97</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>69</td>
<td>170</td>
<td>91</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>64</td>
<td>162</td>
<td>84</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>58</td>
<td>154</td>
<td>77</td>
<td>55</td>
</tr>
<tr>
<td>2200</td>
<td>26</td>
<td>66</td>
<td>166</td>
<td>87</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>61</td>
<td>158</td>
<td>80</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>55</td>
<td>148</td>
<td>73</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>49</td>
<td>136</td>
<td>66</td>
<td>46</td>
</tr>
</tbody>
</table>

Exam Figure 9. Cruise performance
Exam Figure 10. Wind component chart
Maximum Rate of Climb

Conditions:
- Flaps Up
- Gear Up
- 2700 RPM
- Full Throttle
- Mixture Set at Placard Fuel Flow
- Cowl Flaps Open
- Standard Temperature

NOTES:
1. Add 12 pounds of fuel for engine start, taxi and takeoff allowance.
2. Increase time, fuel and distance by 10% for each 10 °C above standard temperature.
3. Distances shown are based on zero wind.

<table>
<thead>
<tr>
<th>WEIGHT LBS</th>
<th>PRESS ALT FT</th>
<th>CLIMB SPEED KIAS</th>
<th>RATE OF CLIMB FPM</th>
<th>FROM SEA LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TIME MIN</td>
</tr>
<tr>
<td>3800</td>
<td>S.L.</td>
<td>97</td>
<td>860</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>95</td>
<td>760</td>
<td>2</td>
</tr>
<tr>
<td>4000</td>
<td></td>
<td>94</td>
<td>660</td>
<td>5</td>
</tr>
<tr>
<td>6000</td>
<td></td>
<td>93</td>
<td>565</td>
<td>9</td>
</tr>
<tr>
<td>8000</td>
<td></td>
<td>91</td>
<td>465</td>
<td>13</td>
</tr>
<tr>
<td>10,000</td>
<td></td>
<td>90</td>
<td>365</td>
<td>18</td>
</tr>
<tr>
<td>12,000</td>
<td></td>
<td>89</td>
<td>265</td>
<td>24</td>
</tr>
<tr>
<td>3500</td>
<td>S.L.</td>
<td>95</td>
<td>990</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>94</td>
<td>885</td>
<td>2</td>
</tr>
<tr>
<td>4000</td>
<td></td>
<td>93</td>
<td>780</td>
<td>5</td>
</tr>
<tr>
<td>6000</td>
<td></td>
<td>91</td>
<td>675</td>
<td>7</td>
</tr>
<tr>
<td>8000</td>
<td></td>
<td>90</td>
<td>570</td>
<td>11</td>
</tr>
<tr>
<td>10,000</td>
<td></td>
<td>89</td>
<td>465</td>
<td>15</td>
</tr>
<tr>
<td>12,000</td>
<td></td>
<td>87</td>
<td>360</td>
<td>20</td>
</tr>
<tr>
<td>3200</td>
<td>S.L.</td>
<td>94</td>
<td>1135</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>92</td>
<td>1020</td>
<td>2</td>
</tr>
<tr>
<td>4000</td>
<td></td>
<td>91</td>
<td>910</td>
<td>4</td>
</tr>
<tr>
<td>6000</td>
<td></td>
<td>90</td>
<td>800</td>
<td>6</td>
</tr>
<tr>
<td>8000</td>
<td></td>
<td>88</td>
<td>685</td>
<td>9</td>
</tr>
<tr>
<td>10,000</td>
<td></td>
<td>87</td>
<td>575</td>
<td>12</td>
</tr>
<tr>
<td>12,000</td>
<td></td>
<td>86</td>
<td>465</td>
<td>16</td>
</tr>
</tbody>
</table>

Exam Figure 11. Fuel, time, and distance to climb
Circle the most correct answer choice.

1. Most of the water vapor in the atmosphere is contained in the
 A — tropopause.
 B — troposphere.
 C — stratosphere.

2. Every physical process of weather is accompanied by or is the result of
 A — a heat exchange.
 B — the movement of air.
 C — a pressure differential.

3. Convective circulation patterns associated with sea breezes are caused by
 A — warm, dense air moving inland from over the water.
 B — water absorbing and radiating heat faster than the land.
 C — cool, dense air moving inland from over the water.

4. What causes air to flow counterclockwise around a low-pressure area in the Northern Hemisphere?
 A — Coriolis force.
 B — Surface friction.
 C — Pressure gradient.

5. During the summer months in the middle latitudes, the jetstream shifts toward the
 A — north and speed decreases.
 B — south and speed increases.
 C — north and speed increases.

6. A strong windshear can be expected
 A — in the jetstream from above a core having a speed of 60 to 90 knots.
 B — if the 5°C isotherms are spaced between 7° and 10° of latitude.
 C — on the low-pressure side of a jetstream core where the speed at the core is stronger than 110 knots.

7. When an air mass is stable, which of these conditions are most likely to exist?
 A — Towering cumulus and cumulonimbus clouds.
 B — Moderate to severe turbulence at the lower levels.
 C — Smoke and/or dust are concentrated at the lower levels with resulting poor visibility.

8. What minimum distance should exist between intense radar echoes before any attempt is made to fly between these thunderstorms?
 A — 20 miles.
 B — 30 miles.
 C — 40 miles.

9. Which combination of weather-producing variables would likely result in cumuliform-type clouds, good visibility, and shower rain?
 A — Stable, moist air and orographic lifting.
 B — Unstable, moist air and orographic lifting.
 C — Unstable, moist air and no lifting mechanism.

10. Which is true with respect to a high or low-pressure system?
 A — A high-pressure area or ridge is an area of rising air.
 B — A low-pressure area or trough is an area of descending air.
 C — A high-pressure area or ridge is an area of descending air.

11. When flying into a low-pressure area in the Northern Hemisphere, the wind direction and velocity will be from the
 A — left and decreasing.
 B — left and increasing.
 C — right and decreasing.

12. Which is true regarding a cold front occlusion?
 A — The air ahead of the warm front is colder than the air behind the overtaking cold front.
 B — The air ahead of the warm front is warmer than the air behind the overtaking cold front.
 C — The air ahead of the warm front has the same temperature as the air behind the overtaking cold front.
13. What is the upper limit of the Low Level Significant Weather Prognostic Chart?
 A — 30,000 feet.
 B — 24,000 feet.
 C — 18,000 feet.

14. Hatching on a Constant Pressure Analysis Chart indicates
 A — a hurricane eye.
 B — wind speed 70 knots to 100 knots.
 C — wind speed 110 knots to 150 knots.

15. Terminal aerodrome forecasts are issued
 A — 4 times daily and are valid for 24 hours.
 B — 6 times daily and are valid for 8 hours.
 C — hourly and are valid for 1 hour.

16. What prevents air from flowing directly from high-pressure areas to low-pressure areas?
 A — Coriolis force.
 B — Surface friction.
 C — Pressure gradient force.

17. What is the approximate base of the cumulus clouds if the temperature at 2,000 feet MSL is 70°F and the dewpoint is 52°F?
 A — 3,000 feet MSL.
 B — 4,000 feet MSL.
 C — 6,000 feet MSL.

18. Virga is best described as
 A — streamers of precipitation trailing beneath clouds which evaporates before reaching the ground.
 B — wall cloud torrents trailing beneath cumulonimbus clouds which dissipate before reaching the ground.
 C — turbulent areas beneath cumulonimbus clouds.

19. Given:
 Winds at 3,000 feet AGL 30 kts
 Surface winds ... Calm
 While approaching for landing under clear skies a few hours after sunrise, one should
 A — allow a margin of approach airspeed above normal to avoid stalling.
 B — keep the approach airspeed at or slightly below normal to compensate for floating.
 C — not alter the approach airspeed, these conditions are nearly ideal.

20. The station originating the following METAR observation has a field elevation of 3,500 feet MSL. If the sky cover is one continuous layer, what is the thickness of the cloud layer? (Top of overcast reported at 7,500 feet MSL.)
 METAR KHOB 151250Z 17006KT 4SM OVC005 13/11 A2998
 A — 2,500 feet.
 B — 3,500 feet.
 C — 4,000 feet.

21. Which statement pertaining to the following Terminal Aerodrome Forecast (TAF) is true?
 TAF
 KMEM 091135Z 0915 15005KT 5SM HZ BKN060 FM 1600 VRB04KT P6SM SKC
 A — Wind in the valid period implies surface winds are forecast to be greater than 5 KTS.
 B — Wind direction is from 160° at 4 KTS and reported visibility is 6 statute miles.
 C — SKC in the valid period indicates no significant weather and sky clear.

22. What values are used for Winds Aloft Forecasts?
 A — True direction and MPH.
 B — True direction and knots.
 C — Magnetic direction and knots.

23. From which of the following can the observed temperature, wind, and temperature/dew point spread be determined at a specified altitude?
 A — Stability Charts.
 B — Winds Aloft Forecasts.
 C — Constant Pressure Analysis Charts.

24. FSS’s in the conterminous 48 United States having voice capability on VORs or radiobeacons (NDBs) broadcast
 A — AIRMETs and SIGMETs at 15 minutes past the hour and each 15 minutes thereafter as long as they are in effect.
 B — AIRMETs and nonconvective SIGMETs at 15 minutes and 45 minutes past the hour for the first hour after issuance.
 C — hourly weather reports at 15 and 45 minutes past each hour for those reporting stations within approximately 150 NM of the broadcast stations.
25. When making an instrument approach at the selected alternate airport, what landing minimums apply?
 A — Standard alternate minimums.
 B — The IFR alternate minimums listed for that airport.
 C — The landing minimums published for the type of procedure selected.

26. Which is true regarding the use of a Standard Instrument Departure (DP) chart?
 A — At airfields where DPs have been established, DP usage is mandatory for IFR departures.
 B — To use a DP, the pilot must possess at least the textual description of the approved standard departure.
 C — To use a DP, the pilot must possess both the textual and graphic form of the approved standard departure.

27. Most pilots have fallen prey to dangerous tendencies or behavior problems at some time. Some of these dangerous tendencies or behavior patterns which must be identified and eliminated include:
 A — Deficiencies in instrument skills and knowledge of aircraft systems or limitations.
 B — Performance deficiencies from human factors such as fatigue, illness or emotional problems.
 C — Peer pressure, get-there-itis, loss of positional or situation awareness, and operating without adequate fuel reserves.

28. When should pilots decline a “land and hold short” (LAHSO) clearance?
 A — When it will compromise safety.
 B — If runway surface is contaminated.
 C — Only when the tower controller concurs.

29. What tolerances must be maintained in order to perform Slow Flight according to the Commercial Practical Test Standards?
 A — Altitude must be lower than 1,500 feet AGL, airspeed maintained at 1.2 V_{S1}, +10/-5.
 B — Altitude must be no lower than 1,500 feet AGL, and altitude maintained at ±50 feet, and heading ±5°.
 C — Altitude must be no lower than 1,500 feet AGL, and altitude maintained at ±50 feet, and heading ±5°.

30. What tolerances must be maintained to perform Stalls according to the Commercial Practical Test Standards?
 A — Altitude must remain above 1,500 feet AGL, heading ±10°, and recovery promptly made.
 B — Altitude must remain above 3,000 feet AGL, heading ±10°, and recovery promptly made.
 C — Announces first indication of stall, maintains heading ±15°, and recovers promptly.

31. According to the Commercial Practical Test Standards, a Steep Turn must be performed maintaining
 A — a coordinated 360° turn, with a 50° bank, ±5 degrees, rolling out on the entry heading, ±5°.
 B — a 45° bank, ±10°, while coordinating a 360° turn.
 C — ±100 feet, ±10 knots, V_A or recommended entry speed, and coordination.

32. According to the Commercial Practical Test Standards, a Chandelle requires
 A — a coordinated 180° turn resulting in an airspeed approximately 1.2 V_{S1} ±5 knots.
 B — a coordinated 90° turn resulting in a full stall attitude.
 C — a coordinated 180° turn resulting in an airspeed approximately V_{S0} +5, -0 knots.

33. According to the Commercial Practical Test Standards, Lazy Eights require
 A — a constant pitch, bank, and turn rate.
 B — a constantly changing pitch, bank, and turn rate.
 C — a constant bank, airspeed, and power setting.

34. According to the Commercial Practical Test Standards, Eights-on-Pylons require
 A — pylons which will permit approximately 3 to 5 seconds of straight-and-level flight between them.
 B — maintaining altitude ±100 feet, heading ±10°, and airspeed ±10 knots.
 C — a pivotal altitude at least 1,500 feet AGL.